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ABSTRACT OF THE DISSERTATION

The Quantitative Genetics of Sexual Differences: 
New Methodologies and an Empirical Investigation of Sex-Linked, Sex-Specific, Non-Additive, 

and Epigenetic Effects

by

Matthew Ernest Wolak

Doctor of Philosophy, Graduate Program in Evolution, Ecology, and Organismal Biology
University of California, Riverside, December 2013

Dr. Daphne Fairbairn, Chairperson

Phenotypic differences between females and males are widely observed in organisms with 

separate sexes.  How these sexual dimorphisms evolve despite the sexes sharing a majority of 

their genome remains an unresolved issue in evolutionary biology as theoretical models often 

disagree over the genetic mechanisms that are predicted to facilitate the evolution of sexual

dimorphism.  In this dissertation, I develop quantitative genetic methods for estimating sex-

specific non-additive genetic and sex-linked additive genetic (co)variances.  I then empirically 

quantify the genetic effects underlying population differences in sexually dimorphic traits using 

the water strider Aquarius remigis.   

I show that differences between the sexes in genetic architectures bias estimates of 

additive genetic variance if these differences are improperly incorporated into quantitative genetic 

analyses.  I then develop the nadiv software package for the R statistical program to facilitate 

estimation of non-additive genetic (co)variances using the “animal model”.  Next, I use 

simulations to demonstrate that estimates of sex-specific additive genetic variances and between-

sex additive genetic correlations are biased when sex-linked additive genetic variance is ignored.  

I create a genetic model of a sex-linked locus to derive general expressions for the 

covariance between relatives due to sex-linked genes applicable under any form of global sex 
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chromosome dosage compensation.  These expressions lead to the development of formulae and 

algorithms (incorporated into nadiv) to create sex-linked relatedness matrices for use in animal 

model analyses.  I further show that the way by which sex-linked relatedness matrices under the 

various forms of dosage compensation differ from one another implies that unbiased estimates of 

sex-linked additive genetic variance can still be obtained even when the particular form of dosage 

compensation is unknown.  

Using population crosses of water striders, I show the net genetic effects contributing to 

sexually dimorphism differ between female and male water striders.  I demonstrate that the 

magnitude of this difference in epistatic and dominance maternal genetic effects positively 

covaries with the magnitude of sexual dimorphism across a range of morphological traits.  This is 

the first study to show that sex-specific non-additive genetic effects correlate with the degree of 

sexual dimorphism across traits.
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INTRODUCTION TO THE DISSERTATION

Within a species, female and male organisms often differ from one another in morphology, 

physiology, behavior, and/or life history (Darwin 1874; Fairbairn 2013).  Explaining how these 

differences, called sexual dimorphisms, can arise and vary among populations presents a 

conundrum to evolutionary biologists.  How do populations evolve differences between the sexes 

when the sexes share the same genes?  The answer to this question not only contributes to the 

advancement of evolutionary theory, but also potentially affects the way plant and animal 

breeders manage agricultural populations and how we approach the study of sex-specific genetic 

disorders in humans.

The key assumption is that a genetic conflict between the sexes occurs when the 

phenotype that maximizes fitness for one sex differs from that which maximizes fitness for the 

other sex (Roff 1997).  Darwin (1874) was the first to explain how this could come about when 

he argued that natural and sexual selection often act differently in the two sexes.  However, sex-

specific responses to these selection pressures are constrained by the genes shared between the 

two sexes.  For example, females that have traits that are well adapted to maximize female fitness 

will pass on genes for these traits to the detriment of their sons and similarly for fathers passing 

on genes to their daughters.  

Differences in the location and interaction of genes can arise to mitigate genetic sexual 

conflicts.  Because the chromosomes involved in sex determination differ between females and 

males (XX/XY or ZZ/ZW), evolutionary theory has long predicted that genes responsible for 

sexually dimorphic traits will be located on the sex chromosome that both sexes share (sex-

linkage; Fisher 1931).  However, it is also widely observed that sexual dimorphism is present and 

often quite extreme in many species without chromosomal sex determination (e.g., some fish and 

reptile species do not have sex chromosomes at all).  Therefore, identifying the genetic 
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mechanisms that facilitate the evolution of sexual dimorphism necessitates the investigation of 

other components of the genetic architecture besides sex-linkage.

Genetic conflict between the sexes can also be resolved if genes located on the autosomes 

(non-sex chromosomes) interact.  A non-additive genetic interaction causes the phenotypic 

expression of an allele to be contingent upon the genetic background of that allele.  If instead an 

allele is sensitive to the sex in which it is expressed (one can think of sex as a genetic 

background), this will lead to differential expression in one sex versus the other (i.e., sex-specific 

non-additive genetic effects).  Testing the predictions of sex-linkage or sex-specific non-additive 

effects requires disentangling genetic effects located on sex chromosomes from those on the 

autosomes as well as the ability to discern additive effects of alleles from sex-specific interactive 

effects.

The field of quantitative genetics provides a useful framework for identifying the genetic 

effects contributing to phenotypic evolution while, at the same time, maintaining relevance to the 

fundamental unit of selection - the individual.  Quantitative genetics uses statistical inferences 

from the similarity of phenotypes between relatives to elucidate the underlying genetic basis of 

phenotypic variation at the population level.  It assumes that quantitative traits are polygenic 

(influenced by many genes of relatively small effect) and that the population phenotypic variance 

in a trait can be explained by different fractional contributions from components of the genetic 

architecture and the environment (Roff 1997).  

The field of quantitative genetics has been established for over a century and remains a 

modern, expanding field (e.g., Yule 1906; Fisher 1918; Lande 1979, 1980; Steppan et al. 2002; 

Jones et al. 2003; Kruuk 2004; Kruuk et al. 2008).  However, despite the widespread use in many 

fields, including evolutionary biology, there exist very few empirical studies seeking to elucidate 

the quantitative genetic bases of sexually dimorphic traits.  This is partly due to a few 
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methodological and theoretical hurdles that must be overcome before we can test the most recent 

theory regarding the genetic architecture of sexually dimorphic traits.  In my dissertation, I seek 

to develop new quantitative genetic methodologies and expand upon existing ones to enable 

empirical evaluation of theory predicting either sex-linkage of additive genetic effects or sex-

specific non-additive genetic effects facilitating the evolution of sexual dimorphisms.  Further, I 

empirically evaluate the theoretical predictions for the type of interaction (i.e., additive vs. non-

additive) and location (i.e., autosomal vs. sex chromosomal) of genetic effects that underlie 

sexually dimorphic traits using the water strider Aquarius remigis.  

In chapter one, I demonstrate that even simple quantitative genetic analyses to estimate 

additive genetic variation must consider the differences between the sexes in genetic architecture.  

I address a common misunderstanding in quantitative genetics regarding the biological 

assumptions underlying the use of “fixed effects” in analytical models that generally account for 

differences in phenotypes between two classes in a population.  The ideas presented in this 

chapter apply generally to any situation where there are two discrete classes present in the 

population and are not just restricted to differences between the two sexes.  I demonstrate the 

conditions under which treatment of differences between two classes as a fixed effect does not 

sufficiently account for differences among classes at the genetic level and leads to biased 

estimates of additive genetic variance.  Despite the widespread occurrence of this practice, the 

potential for bias is not commonly known nor has it been formally demonstrated.  The work goes 

beyond a simple technical comment by deriving equations to predict the bias in estimates of 

additive genetic variance when practitioners mistakenly implement statistical assumptions which 

are incongruent with the biology of their study organisms.  This simple derivation of predictive 

equations is strengthened by its universal applicability to various methods used to estimate 

additive genetic variance.  
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In the second chapter, I develop methodological tools to be combined with animal model 

software programs to estimate non-additive genetic variances in populations for which a complete 

family history (pedigree) has been recorded.  Many of the quantitative genetic software programs 

commonly used by ecologists and evolutionary biologists lack the option to construct the matrices 

required to estimate non-additive genetic variances.  However, the software programs are still 

able to make these estimates if the proper matrices are supplied.  The R statistical software 

package I develop in this chapter, nadiv, efficiently creates the necessary relatedness matrices to 

be used in an animal model.  The work presented in this paper details a significant contribution to 

the toolkit used by evolutionary quantitative geneticists as well as providing an overview of the 

important aspects to the types of analyses now available because of this package.

The third chapter highlights the importance of explicitly accounting for sex-linked 

additive genetic variances and covariances in quantitative genetic analyses.  To date very few 

studies have estimated or even considered genetic variation located on the sex chromosomes.  In 

this chapter, I consider the common assumption that additive genetic variance on the shared sex

chromosome (i.e., X or Z) is either assumed to be negligible and therefore ignored or that it is 

sufficiently modeled by autosomal covariances between relatives.  Although this assumption has 

been made either overtly or implicitly for almost all estimates of additive genetic variance to date, 

this is not widely appreciated nor has its potential for introducing bias been measured.  I show 

how sex-linked additive genetic (co)variation differs from its autosomal counterpart and 

demonstrate the bias in estimates of female and male additive genetic variances and between-sex 

correlations that arise from assuming an autosomal only model.  As sexual conflict is predicted to 

facilitate the evolution of genes on the sex chromosomes, I emphasize how these results might 

affect interpretations of empirical estimates of sexually antagonistic (co)variances. 
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After the demonstration in chapter three of differences between autosomes and sex 

chromosomes in the expected covariance between relatives, I make a much more detailed

investigation into the matrix of expected sex-linked covariances among relatives (sex-linked 

relatedness matrix) in my fourth chapter.  Specifically, many taxa are thought to exhibit some 

mechanism of global sex chromosome dosage compensation as a means to equalize the 

phenotypic effect of alleles expressed in the homogametic sex (two copies of the shared sex 

chromosome) with that of the heterogametic sex (one copy of the shared sex chromosome).  

These forms of dosage compensation alter the sex-linked relatedness matrix and have yet to be 

incorporated into genetic models used to construct such matrices.  I develop a single locus genetic 

model that is flexible enough to model the expected genetic covariance between relatives due to 

sex-linked genes under any form of dosage compensation.  Additionally, I derive the formulae 

and algorithms necessary to construct sex-linked relatedness matrices for use in quantitative 

genetic analyses using animal models.  These algorithms are available in the nadiv software 

package introduced in my second chapter.   

In my final chapter, I present results from an empirical study that quantifies the genetic 

effects underlying a range of morphological traits in the water strider Aquarius remigis that vary 

in magnitude of sexual dimorphism.  I quantify the net genetic effects underlying phenotypic 

differences among populations which enables me to draw inference on the relative importance of 

different types of genetic effects and where they are located in the genome (autosomes versus sex 

chromosomes).  In this chapter, I find that female and male water striders differ in the magnitude 

of genetic effects contributing to population differences in sexually dimorphic traits.  Further, the 

magnitudes of between-sex differences in non-additive genetic effects (i.e., epistatic and 

dominance maternal genetic effects) increase across traits in relation to the degree of the sexual 

dimorphism.  Together, the chapters in this dissertation advance the field of evolutionary genetics 
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by providing new methodologies, theoretical advancements, and empirical evaluations of 

predictions from evolutionary theory.



7

Literature cited

Darwin, C. 1874. The Descent of Man and Selection in Relation to Sex. Humboldt, New York.
Fairbairn, DJ. 2013. Odd Couples: extraordinary differences between the sexes in the animal 

kingdom. Princeton University Press, Princeton.
Fisher, R.A. 1918. The correlation between relatives on the supposition of Mendelian inheritance. 

Trans. Royal Soc. Edinburgh. 52:399-433.
Fisher, R.A. 1931. The evolution of dominance. Biological Reviews. 6:345-368.
Jones, A.G., S.J. Arnold, and R. Bürger. 2003. Stability of the G-matrix in a population 

experiencing pleiotropic mutation, stabilizing selection, and genetic drift. Evolution. 
57:1747-1760.

Kruuk, L.E.B. 2004. Estimating genetic parameters in natural populations using the ‘animal 
model’. Phil. Trans. R. Soc. Lond. B. 359:873-890.

Kruuk, L.E.B., J. Slate, and A.J. Wilson. 2008. New answers for old questions: the evolutionary 
quantitative genetics of wild animal populations. Annu. Rev. Ecol. Syst. 39:525-548.

Lande, R. 1979. Quantitative genetic analyses of multivariate evolution, applied to brain:body 
size allometry. Evolution. 33:402-416.

Lande, R. 1980. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. 
Evolution. 34:292-305.

R Development Core Team. 2012. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria.

Roff, D.A. 1997. Evolutionary Quantitative Genetics. Chapman & Hall, New York. 
Steppan, S.J., P.C. Phillips, and D. Houle. 2002 Comparative quantitative genetics: evolution of 

the G matrix. Trends Ecol. Evol. 17:320-327.
Yule, G.U. 1906. On the theory of inheritance of quantitative compound characters on the basis 

of Mendel’s laws – a preliminary note. Report of the 3rd International Conference on 
Genetics: 140-142.



8

CHAPTER 1

Biased accounting for within-population differences in quantitative genetic models

Abstract

Populations often contain discrete classes or morphs (e.g., sexual dimorphisms, wing 

dimorphisms, trophic dimorphisms), which can be considered as different environments within 

which traits are expressed.  Theory predicts the evolution of genotype-by-environment 

interactions as a consequence of selection favoring different trait combinations in each 

environment.  When analyses consider the quantitative genetic architecture of a trait as being 

perfectly correlated between the two environments or morphs within a population, estimates of 

additive genetic variance can be biased.  We illustrate the effects of modeling the distribution of 

breeding values between two morphs within a population as a fixed difference.  We demonstrate 

that unless the between-morph additive genetic correlation is one, solely accounting for fixed 

differences between the two morphs results in an underestimation of the additive genetic 

variance.  This result is derived for three widely used quantitative genetic variance partitioning 

methods.  We highlight the specific case where the two morphs are the two sexes and discuss the 

potential biases present in estimates of additive genetic variance when between-sex correlations 

are less than one.
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Introduction

Partitioning phenotypic variation into contributions from additive genetic as well as non-additive 

genetic and environmental variances is the central paradigm in evolutionary quantitative genetics 

(Roff 2006).  Although recent work has highlighted other contributions to phenotypic variance, 

such as common environment, maternal genetic, and spatial autocorrelation among relatives 

(Kruuk et al. 2001; MacColl and Hatchwell 2003; Charmantier et al. 2004; Wilson et al. 2005; 

Kruuk and Hadfield 2007; Stopher et al. 2012), estimates of additive genetic variance are of  

paramount importance for predicting population responses to artificial selection (reviewed in Hill 

and Caballero 1992) or natural selection (Kruuk et al. 2008) using the breeder’s equation 

(Falconer 1989; Lynch and Walsh 1998) or the Secondary Theorem of Natural Selection 

(Robertson 1966; Price 1970).

An individual’s average genetic effect for a polygenic trait in a population is known as its 

breeding value.  Because breeding values are expressed as an individual’s average deviation from 

the population mean, the mean breeding value equals zero and the variance in breeding values is 

the additive genetic variance (Falconer 1989).  Both breeding values and additive variances are 

defined within the context of a specific population and environment.  However, traits are often 

expressed in two different environments or phenotypic classes within a single population.  This is 

true of dimorphic traits such as disease incidence, wing dimorphisms, protective dimorphisms, 

trophic dimorphisms, mating dimorphisms, and life cycle dimorphisms (reviewed in Roff 1996), 

and also of traits differing between the sexes, for example sexual dimorphisms in behavior, 

morphology, physiology, and life history (reviewed in Fairbairn et al. 2007; Fairbairn 2013).  

Morph can be considered as an environment which interacts with genes to alter the average 

genetic effects.  Polygenic traits occurring in both phenotypic classes (morphs) are often exposed 

to different selective environments within each morph, leading to selection for different average 
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allelic effects in each morph and ultimately to the evolution of morph-specific genetic effects that 

can be modeled as genotype-by-environment interactions (Roff 1997).  If there are only two 

morphs (environments), the genotype-by-morph interaction can be expressed as a genetic 

correlation between morphs (Falconer 1952).  This genetic correlation summarizes the 

relationship between the ranks of breeding values expressed in one morph relative to the rank in 

the other.  

Investigators making statistical inferences on breeding values commonly treat dimorphic 

variation by including the morph as a fixed effect in statistical models to remove the average 

difference between the morphs (e.g., Wilson et al. 2010; see also WAMWiki at 

http://www.wildanimalmodels.org/tiki-index.php).  Although this is necessary to control for fixed 

differences in phenotypic means between the morphs, it does not affect the correlation between 

morphs in breeding values (i.e., between-morph additive genetic correlation).  By itself, using a 

fixed effect of morph invokes the biological assumption of a perfect additive genetic correlation 

between the two morphs.  In this paper, we use breeding values to describe bias in the estimates 

of additive genetic variance that arises in analyses that consider the additive genetic effects of a 

trait as being perfectly correlated between two morphs in a population.  We find that whenever 

the between-morph additive genetic correlation is less than one, the additive genetic variance for 

the morphs combined will be underestimated when only a fixed effect of morph is specified.  

Further, we consider how to estimate the magnitude of this bias for a variety of quantitative 

genetic variance partitioning methods (e.g., offspring-parent regression, half-sib ANOVA, and 

mixed effect models of pedigreed populations). To illustrate our point, we narrow our focus to 

one widely encountered dimorphism, sexual dimorphism.    
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Morph-specific quantitative genetic parameters

Breeding values

In practice, breeding values can be estimated using a combination of phenotypic information and 

the relatedness among individuals within a population.  Although an individual can never be 

simultaneously measured for both phenotypes in a dimorphism, each individual carries genes that 

will contribute to both phenotypes.  Therefore, breeding values for phenotypes that are never 

expressed can still be measured.  A common example of this is milk production in dairy cattle, 

where bulls cannot be measured for milk yield (e.g., Mrode 2005).  However, bull breeding 

values for milk yield can be estimated for the purposes of determining which bulls will produce 

daughters with the highest milk yield.  Information for the bull’s breeding value is gathered from 

female relatives that share some proportion of genes that the bull carries for the milk yield trait.

In a hypothetical population, if every individual mates with every other individual and 

offspring are produced from each mating, then breeding values can be estimated as two times the 

deviation of an individual’s average offspring phenotype from the population mean phenotype (p. 

73, Lynch and Walsh 1998).  This concept of breeding values is useful for examining the effect of 

genotype-by-morph interactions on the distribution of breeding values for each morph within a 

population.  If the average genetic effect of an allele differs between morphs, the breeding values 

of the two morphs will also differ.  For example, consider height in an imaginary population of 

dimorphic organisms.  A genotype’s breeding value for height in morph M1 is defined as the 

average genetic effect of its genes on height when expressed in morph M1.  The breeding value 

for the same genotype in morph M2 is defined as the average genetic effect of its genes on height 

when expressed in morph M2.  For this one genotype, breeding values are estimated as two times 

the phenotypic deviation between the average phenotype of morph M1 offspring from the morph 

M1 population mean, and similarly for morph M2.  
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The distribution of breeding values (a1, a2) for the trait in the two morphs of a population 

can be described by a bivariate normal distribution, where each has a mean of zero, a variance 

according to the morph-specific variance in trait breeding values [Var(a1) and Var(a2)], and some 

correlation between breeding values in the two morphs (i.e., ra-1,2; Figure 1.1).  However, when 

the effect of morph on average genetic effects is ignored, the breeding values for a trait are 

defined as the average genetic effects when a genotype is expressed in both morph M1 and morph 

M2 (i.e., the average of morph M1 and M2 breeding values).  The distribution of these average 

breeding values (au) can be described by a univariate normal distribution with a mean of zero and 

variance equal to the variance in average breeding values, Var(au) (Figure 1.1).  The variance in 

au can be predicted from the general formula for the variance of two random variables averaged 

together:

Var(au)=Var(½a1 + ½a2) 

= (½)2Var(a1) + (½)2Var(a2) + 2(½)(½)Cov(a1,a2) (1)

Illustrations of the morph M1, morph M2, and average breeding value distributions, using random 

draws from each respective distribution, are shown in figure 1.1.  When the morphs have the 

same additive genetic variance [Var(a1)=Var(a2)], an algebraic rearrangement of equation 1 

shows that the variance in average breeding values, Var(au), will be less than both Var(a1) and 

Var(a2) whenever the between-morph additive genetic correlation is less than unity.  This is seen 

in figure 1.1, where the spread of points is greater for the breeding values of morphs M1 and M2 

than it is for the spread in average breeding values (Figure 1.1C) and the probability distributions 

for breeding values of morphs M1 and M2 are wider than the probability distribution of the 

average breeding values (Figure 1.1B).
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Assuming that Var(a1)≥Var(a2), a rearrangement of the right hand side of equation 1 

shows that the variance in average breeding values, Var(au), will be less than the either of the two 

additive variances whenever:

      
   
   aa

aa
21
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21a VarVar

VarVar
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In figure 1.2, we have evaluated equation 2 over the range of possible between-morph genetic 

correlations when Var(a2) is 10% less than Var(a1).  

The heritability, or ratio of the additive genetic variance to the phenotypic variance, is 

central to predicting the amount by which the average phenotype in a population will change 

from one generation to the next using the breeder’s equation (Falconer 1989).  Assuming equal 

residual variances for both morphs, if the heritability in morph M1 equals the heritability in 

morph M2, equation 1 can be extended to show that the heritability of the morphs combined will 

underestimate both morph M1 and M2 heritabilities whenever the between-morph additive 

genetic correlation is less than one.  If the heritabilities in morphs M1 and M2 are not equal, then 

by a similar rearrangement to the one which produces equation 2, an equation can be derived to 

predict the between-morph genetic correlation at which the heritability of the morphs combined 

will be less than both of the heritabilities in the two morphs.    

In practice, true breeding values are unknown and thus the additive genetic variance must 

be estimated using known contributions of additive variance to the phenotypic resemblance 

between relatives.  For many breeding designs, the additive genetic variance is estimated as a 

fraction of the covariance between offspring and parent phenotypes or as a fraction of the sire or 

dam variance components (Falconer 1989).  Alternatively, additive genetic variance estimates can 
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be obtained from mixed effect statistical models which simultaneously consider all pair-wise 

relationships.  This latter approach enables estimation of additive genetic variance in non-

standard breeding designs and wild populations for which a population pedigree is available.  

Below, we consider each approach separately.

Offspring-parent and half-sib models

Methods of estimating the additive genetic variance (i.e., the variance in breeding values) from 

the covariance between offspring and parents, or the variance among half-sib families also 

depend on there being no genotype-by-morph interaction for breeding values expressed in two 

different morphs (in addition to other assumptions regarding random mating, non-additive genetic 

effects, and inbreeding; Falconer 1989; Lynch and Walsh 1998).  If these assumptions hold, the 

additive genetic variance equals two times the covariance between offspring and parent 

phenotypes, and four times the variance among sire- or dam-family (nested within sire) 

phenotypes in a nested half-sib breeding design (Falconer 1989; Lynch and Walsh 1998).  When 

equation 1 is multiplied by ½ or ¼, it also predicts the offspring-parent covariance or the sire/dam 

variance, respectively.  Figure 1.2 can be interpreted as depicting the line that predicts either the 

joint offspring-parent covariance or joint sire/dam variances over a range of between-morph 

additive genetic correlations when the (co)variance in one morph is 10% less than the other.  For 

example when the two morphs are two sexes, equation 2 predicts that the mid-offspring on mid-

parent covariance will be less than the sire on male offspring covariance of 90 when the female 

offspring on dam covariance is 100 and the between-sex additive genetic correlation is 

approximately 0.89 (Figure 1.2, grey vertical line).

Morph-specific offspring-parent regressions or nested linear models are therefore 

necessary when the between-morph additive genetic correlation is less than one or the additive 
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genetic variances differ between the morphs.  Bivariate statistical models, where the phenotypes 

in the two morphs are treated as separate traits, can also be utilized to obtain morph-specific 

observed (co)variance components.   The additive genetic (co)variances can then be estimated 

from sire, dam, and within-family (co)variances (e.g., Cowley et al. 1986). 

Animal models

The range of organisms and populations for which researchers can obtain predictions of breeding 

values and make inferences about the additive genetic variance in populations has broadened 

since the adoption of the mixed effects linear model commonly known as the ‘animal model’ 

(Henderson 1973; Lynch and Walsh 1998; Kruuk 2004).  Animal models have become popular 

tools in evolutionary ecology because of their potential to disentangle confounding sources of 

similarity between relatives, simultaneously consider relationships beyond offspring-parent or 

half- and full-siblings in the estimation of variance components, and obtain unbiased estimates of 

model parameters when selection has occurred during a given study (Lynch & Walsh 1998; 

Kruuk 2004). 

Here, we consider the effect of the between-morph additive genetic correlation on joint 

estimates of variance components in animal models.  Estimating one additive variance for both 

morphs in an animal model assumes no genotype-by-morph interactions and, therefore, a 

between-morph additive genetic correlation of one.  A univariate analytical model incorporating 

these assumptions can be specified as:

y = Xβ + Zaa + e (3)
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(Lynch and Walsh 1998; Mrode 2005).  When every individual has only one measurement, y is a 

nx1 vector of phenotypes in a population of n individuals and X is a nx2 design matrix (i.e., 

contains 0s and 1s) with 1s in the first column at rows occupied by morph M1 (corresponding to 

rows in y) and 1s in the second column at rows occupied by morph M2.  The matrix X relates the 

observation in y to the appropriate fixed effect (mean) of morph in β.  The matrix Za is an nxn

design matrix which associates the phenotypic observation in y to the breeding value in a.  The 

variables a and e are the nx1 vectors of additive genetic effects and environmental effects, 

respectively.  The random variables a and e are assumed normally distributed with means of zero 

and variances of Var(a)=Ga⊗A, where A is the additive genetic relationship matrix (⊗

symbolizes the direct product between two matrices), and Var(e)=R⊗I, where I is an identity 

matrix (nxn, with 1s along the diagonal).  In this model, Ga=σ2
a where σ2

a is the additive genetic 

variance in the base population and R=σ2
e, the environmental variance.  Thus, the assumption 

regarding the relationship between morph M1 and M2 breeding values for the univariate model in 

equation 3 is that all breeding values are modeled from a univariate distribution of random 

effects.  

Alternatively, the phenotype of interest can be modeled as a different trait for each morph 

(e.g., Mrode 2005, p.106) by estimating morph-specific variances.  This approach is analogous to 

estimating additive genetic variance in two environments (Roff 1997; Roff and Fairbairn 2011).  

In practice, this is carried out by specifying a bivariate model where the two traits modeled 

represent the phenotype as expressed in morph M1 and morph M2.  In such a model, only morph 

M1 traits are expressed in morph M1 and only morph M2 traits are expressed in morph M2.  

Accordingly, all morph M1 individuals will have missing phenotypes for the morph M2 trait and 

vice versa for morph M2 individuals.  Trait is included as a fixed effect (analogous to morph in a 

univariate model of both morphs) to account for a difference in the means of un-standardized 



17

phenotypes for morphs M1 and M2.  This approach makes a residual covariance between the two 

morphs impossible to define since no individual can express the trait in both morphs (i.e., morph 

M1 phenotypes cannot be expressed in morph M2; e.g., Mrode 2005).  The bivariate description 

is preferred over separate univariate models for each morph, because it allows for estimation of 

the between-morph genetic correlation and increases the precision with which BLUPs for the 

breeding values are obtained.  The latter point arises from the additional information used to 

determine the breeding values for one morph derived from the expression of the phenotype in 

opposite morph relatives (analogous to the above example where one can estimate a bull’s milk 

yield breeding value; Mrode 2005).  This model can be written in matrix notation as:
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In equation 4, a (the bivariate distribution of a1 and a2) and e (the bivariate distribution of e1 and 

e2) are assumed to represent random effects described by multivariate normal distributions.  

Consequently, Var(a)=Ga⊗A, but here Ga is the 2x2 matrix:
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When an animal model only includes morph as a fixed effect, the separate distributions of 

breeding values for the two morphs are assumed perfectly correlated (i.e., ra-1,2=1).  Thus, Ga in 

equation 5 is forced to satisfy σ2
a-1=σ2

a-2=σa-1,2 (ra-1,2=1 when this occurs) and the model in 
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equation 4 is equivalent to the univariate model in equation 3.  When these assumptions are valid 

(i.e., σ2
a-1=σ2

a-2=σa-1,2), mixed effect models treating any differences between the morphs as a 

fixed difference (i.e., morph as a fixed effect and jointly modeling the morphs) will produce 

unbiased estimates of the additive genetic variance in the population.  However, if the between-

morph additive genetic correlation is less than unity (ra-1,2≠1) as illustrated in figure 1.1, the 

univariate model in equation 3 will produce a biased estimate of additive genetic variance as 

predicted by equation 1 (Figure 1.2).  

Sexual dimorphism as an example

Increasingly, researchers have proposed that it is necessary to consider the quantitative genetic 

architecture of a trait separately for each sex, based on the argument that sex-specific differences 

exist (e.g., Fedorka et al. 2007).  In agricultural breeding, the approach has often been to compare 

differences in parameter estimates from models that do or do not consider the sexes separately 

(e.g., Garrick et al. 1989; Rodríguez-Almeida et al. 1995; Lee and Pollak 1997; Van Vleck and 

Cundiff 1998; Näsholm 2004).  These studies report differences in estimates only when the 

between-sex genetic correlations are significantly less than unity.  Consequently, 

recommendations as to the separate or combined consideration of the sexes are proffered on a 

study by study basis.

To date, Roff and Fairbairn (2011) provide the best empirical investigation of the 

dynamics described by equations 1 and 2.  In a study of the genetic basis of life-history trade-offs, 

Roff and Fairbairn (2011) analyzed five traits in two wing morphs of the cricket, Gryllus firmus.  

They initially estimated heritability when the sexes or wing morphs were combined as well as for 

each sex and wing morph separately.  For a number of traits, the combined estimates of 

heritability were lower than the sex-specific or wing-morph specific estimates.  They postulated 
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that these traits had between-sex or between-morph genetic correlations less than one.  In 

agreement with their predictions, and our predictive equations above, Roff and Fairbairn (2011) 

confirmed the presence of genetic correlations between-sexes or wing-morphs significantly less 

than one in the same traits where they found the combined heritability estimate was lower than 

the sex-specific or wing-morph specific estimates.  Roff and Fairbairn’s results highlight that 

morphs within a population, particularly the two sexes, often have different distributions of 

breeding values that reflect the different selective pressures experienced by the morphs.    

As a consequence of divergent reproductive roles between the sexes, female and male 

organisms have different optimal phenotypes which we recognize as dimorphisms in primary and 

secondary sexual traits (Darwin 1874; Fairbairn et al. 2007; Fairbairn 2013).  The differences

between sexes are presumed to reflect sex-specific evolutionary responses toward different fitness 

optima (Hedrick and Temeles 1989; Fairbairn et al. 2007; Fairbairn 2013).    

Correlations between the sexes in the expression of shared alleles constrain the evolution 

of sexual dimorphism (Lande 1980; Reeve and Fairbairn 2001), creating sexual antagonism 

between the sexes (Parker 1979; Arnqvist and Rowe 2005).  Because males and females share 

their autosomal genomes, between-sex genetic correlations for homologous traits are generally 

predicted to be high and close to unity (Roff 1997, p.247 table 7.4; Poissant et al. 2010).  

However, alleles with opposing effects in females and males evolve in response to sexually 

antagonistic selection and contribute disproportionately to genetic variance in fitness 

(Charlesworth and Hughes 1999; Connallon and Clark 2012), a pattern often seen in many 

empirical studies of plants and animals (e.g., Chippindale et al. 2001; Fedorka and Mousseau 

2004; Brommer et al. 2007; Foerster et al. 2007; Cox and Calsbeek 2010; Delph et al. 2011).  

Consequently, the magnitude of sexual dimorphism is predicted to negatively covary with the 

between-sex genetic correlation (Fisher 1958; Lande 1980; Rice 1984; Fairbairn and Roff 2006; 
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Poissant et al. 2010; but see Meagher 1992).  In addition to changes in the between-sex 

correlation, sex-specific gene expression will lead to differences between the sexes in their 

relative amounts of additive genetic variance (e.g., Preziosi and Roff 1998; Jensen et al. 2003; 

Coltman et al. 2005; Brommer et al. 2007; Walling et al. 2008).

Taken together, empirical support for separate estimates of sex-specific additive genetic 

variances (e.g., Roff and Fairbairn 2011) and evolutionary theory both promote adoption of a null 

model that considers the quantitative genetics of the sexes as different.  Only by first rejecting 

this model should the sexes be combined in further analyses.

Discussion

Estimates of additive genetic variance are used by plant and animal breeders as well as 

evolutionary biologists to answer general questions regarding (i) the evolutionary forces that 

shape additive variance and (ii) population responses to selection.  Discrete morphs or phenotypic 

classes occur in some species by virtue of different patterns of gene expression.  There is no a 

priori reason to assume that the patterns of variances within and covariances among traits should 

be the same for traits expressed in these two genetic environments.  Therefore, initial estimates of 

variances and covariances should consider the separate morphs or classes as distinct with the 

potential for genotype-by-morph interactions between them.  As demonstrated above, when such 

genotype-by-morph interactions are not explicitly considered the resulting variance in the joint 

distribution of breeding values will be less than the variance in breeding values for either class.  

This downward bias can lead to erroneous inferences regarding the magnitude of evolutionary 

forces and to underestimation of expected evolutionary responses in mean phenotype.

Downward biases in estimates of additive genetic variance further exacerbate problems 

with quantitative genetic inference in limited datasets (e.g., some wild populations).  Such 
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datasets often do not have the sample size or informative relationships necessary to disentangle 

additive variance from other sources of phenotypic resemblance among relatives.  These issues 

are compounded when the statistical model attributes less of the phenotypic variance to additive 

genetic effects then it should because of the biases discussed above.  The extent of this problem 

will, in part, be dictated by the additive genetic correlation between the trait values in the morphs. 

Although the arguments made above have been framed within a single trait context for 

simplicity and ease of interpretation, the results extend to multivariate trait relationships where 

the pattern of covariances among traits will often differ between classes as well.  This point is 

particularly salient for predicting evolutionary change using the statistical relationship between 

breeding values of a trait and of relative fitness (Secondary Theorem of Natural Selection; 

Robertson 1966; Price 1970).  For example, studies of sexually dimorphic traits often find 

differences between the sexes in among-trait covariance matrices (e.g., Preziosi and Roff 1998; 

Jensen et al. 2003; Fedorka et al. 2007; Steven et al. 2007; Walling et al. 2008; Roff and Fairbairn 

2011) which have been shown to impact predicted responses to selection (Fedorka et al. 2007).  
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Figure 1.1. The distribution of breeding values when the variances for morphs M1 and M2 equal 
50 and the between-morph correlation equals zero.  A) the probability distribution of breeding 
values for morph M1, B) the probability distributions of the average breeding values (black 
dashed line) and those for of morph M1 and M2 (black solid lines) C) a scatter plot of the average 
breeding values (black filled squares) and the breeding values for morphs M1 (open triangles) and 
M2 (open circles), and D) the probability distribution of breeding values for morph M2. 
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Figure 1.2. The predicted average variance (solid-black, diagonal line) when morph M1 variance 
equals 100 (dotted-black, horizontal line) and morph M2 variance equals 90 (dashed-black, 
horizontal line) using equation 1 from the text.  The average variance will be less than either of 
the two variances whenever the between-morph additive genetic correlation is less than 
approximately 0.89 (vertical-grey line; see equation 2 in text).  The variance on the y-axis can 
either be the additive genetic variance, offspring-parent covariance, sire variance, or dam 
variance.



27

CHAPTER 2

nadiv: an R package to create relatedness matrices for estimating non-additive genetic 

variances in animal models

Abstract

The Non-Additive InVerses (nadiv) R software package contains functions to create and use 

non-additive genetic relationship matrices in the animal model of quantitative genetics.  This 

paper discusses the concepts relevant to non-additive genetic effects and introduces the package.   

nadiv includes functions to create the inverse of the dominance and epistatic relatedness 

matrices from a pedigree, which are required for estimating these genetic variances in an animal 

model.  The paper focuses on three widely used software programs in ecology and evolutionary 

biology (ASReml, MCMCglmm, and WOMBAT) and how nadiv can be used in conjunction 

with each.  Simple tutorials are provided in Appendix A.
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Introduction

A major advance for the study of quantitative trait evolution in wild populations was precipitated 

by the adoption of the ‘animal model’, a mixed effects model with a long and proven history in 

the animal breeding sciences (Henderson, 1984; Lynch & Walsh, 1998; Kruuk, 2004).  Using the 

similarity among relatives to elucidate the underlying genetic basis of phenotypic variation at the 

population level, the method: 1) enables researchers to control (or study in and of themselves) 

confounding factors due to environmental or other non-heritable sources of similarity between 

relatives, 2) simultaneously utilizes additional relationships beyond parent-offspring or half- and 

full-siblings in the estimation of genetic parameters, thereby increasing the types of populations 

and organisms able to be studied, and 3) is unbiased to selection within a population (Lynch & 

Walsh, 1998; Kruuk, 2004).  Response variables in animal models may be univariate, 

multivariate, Gaussian or non-Gaussian.  Further, solutions to the animal model may be obtained 

using Likelihood or Bayesian approaches (further information in Appendix A, Relatedness 

matrices in the animal model section and detailed descriptions of the animal model can be found 

in Lynch & Walsh, 1998; Sorensen & Gianola, 2002; Kruuk, 2004; Mrode, 2005).  

The phenotypic variance of a quantitative trait can be broken down into additive genetic, 

non-additive genetic, and environmental sources of variation.  The non-additive genetic variance 

can be further subdivided into dominance and epistatic variances.  The additive, dominance, and 

epistatic genetic variances are proportional to the probability that individuals share alleles 

identical by descent at the same locus, for both alleles at the same locus, or for alleles at different 

loci, respectively.  If one knows all the relationships in a population (i.e., the pedigree) then the 

above genetic variances can be estimated in an animal model.

Non-additive genetic variances are seldom, if ever, estimated in ecological and 

evolutionary analyses (but see, Crnokrak & Roff, 1995; Waldmann, 2001), although the fields of 
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animal and plant breeding have been estimating these genetic variances for over two decades 

(e.g., Hoeschele, 1991; Templeman & Burnside, 1991).  This could be, in part, because non-

additive genetic effects are assumed to be of little importance in predicting the evolutionary 

trajectory of moderately sized wild populations (Fisher, 1958).  Also, studies of wild organisms 

typically have low numbers of individuals in a population, especially compared to the millions 

often handled in animal breeding.  This is problematic, because datasets with too few individuals 

preclude the inclusion of too many random effects in an animal model (Kruuk, 2004) and have 

been shown to be problematic for the estimation of dominance variance (Misztal, 1997).  

However, if dominance genetic effects are present, but not included in an animal model, they can 

potentially bias the prediction of the additive genetic effects as well as the estimate of additive 

genetic variance (Lynch & Walsh, 1998; Ovaskainen et al. 2008; Waldmann et al. 2008; but see 

Misztal et al. 1997).  Additionally, non-additive effects are of central interest to a number of 

evolutionary hypotheses, for example: dominance and epistasis are expected to contribute 

substantially to variation in fitness (Wright, 1929; Haldane, 1932; Fisher, 1958; Crnokrak & Roff, 

1995; Merilä & Sheldon 1999), non-additive variance may determine the extent to which additive 

genetic variance increases after bottlenecks (Cockerham & Tachida, 1988; Goodnight, 1988; 

Willis & Orr, 1993; Barton & Turelli, 2004), epistasis can shape additive genetic effects and 

variances during processes such as mutation and selection (Gavrilets, 1993; Hermisson et al.

2003; Carter et al. 2005) which has consequences for the evolution of sex and recombination 

(Charlesworth, 1990), epistasis plays an integral part in speciation through the evolution of 

Dobzhansky-Muller incompatabilities (Crow & Kimura, 1970; Orr, 1995; Welch, 2004), the sign 

of genetic correlations between fitness-related traits may depend on the amount of dominance 

variance (Curtsinger et al. 1994; Roff, 1997; Merilä & Sheldon 1999), dominance potentially 

causes inbreeding depression or heterosis (Roff, 1997) especially in small populations of 
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conservation concern (Waldmann et al. 2008), and sex-linked dominance effects may play a role 

in the evolution of sexually dimorphic traits (Fairbairn & Roff, 2006).

Aside from being unable to obtain meaningful estimates of non-additive variances as a 

result of the overall size of a population (see “Sampling Covariances and Confidence Intervals” 

below), the next challenge to including dominance and epistasis in animal models is constructing 

the non-additive genetic relationship matrices (i.e., dominance matrix D and the three digenic 

epistatic matrices: additive by additive AA, additive by dominance AD, and the dominance by 

dominance DD - where the additive genetic relationship matrix is represented by A and

boldfaced, upper-case letters indicate a matrix).  A further challenge is to obtain the inverses of 

these matrices, which is what is required to solve the system of equations in the animal model.  

Although the process of constructing the necessary matrix inverses has been worked out (e.g., 

Hoeschele & VanRaden, 1991), only the creation of the additive inverse matrix has been 

incorporated into software used by most ecologists and evolutionary biologists: ASReml 

(Gilmour et al. 2009), MCMCglmm (Hadfield, 2010), and WOMBAT (Meyer, 2007).  This paper 

gives an overview of the software package nadiv (Non-Additive InVerses), implemented in the 

widely used statistical program R (R Development Core Team, 2011), which can be used to 

construct dominance and epistatic genetic relatedness matrices and their inverses.  The inverses 

can subsequently be used in a variety of animal model software programs for univariate or 

multivariate analyses of quantitative traits.  Below, examples briefly demonstrate the main 

functions using nadiv’s simulated dataset warcolak. 

Dominance relatedness matrix construction: makeD()

The relatedness in dominance genetic effects between individuals i and j, or coefficient of 

fraternity (∆ij), can be approximated by:



31

∆ij = (θkmθln + θknθlm) / 4 (1)

(pp. 140-141 in Lynch & Walsh, 1998) where k and l represent the dam and sire of i, m and n the 

dam and sire of j, and θ is the additive genetic relatedness between individuals noted in the 

subscripts (elements in A).  For a list of coefficients of fraternity between common types of 

relatives, I refer the reader to Lynch & Walsh (table 24.1 on p. 721, 1998) or tables 4 and 5 from 

Fairbairn & Roff (2006).  Equation 1 assumes no inbreeding and ignores dominance connections 

through grandparents, both for the sake of computational tractability (Ovaskainen et al., 2008).  

All pairwise ∆ij in a population can be approximated using the makeD() function of nadiv, 

assuming no inbreeding.  Accounting for the presence of inbreeding in the relatedness matrix 

adds a great deal of complexity to the estimation of dominance in an animal model (Smith & 

Mäki-Tanila, 1990).  Despite the potential for inbreeding to alter the estimates of ∆ij, de Boer & 

van Arendonk (1992) showed an unbiased impact on the estimates of random effects in an animal 

model when inbreeding is moderately low and included as a fixed effect in the model.  

Similar to algorithms which construct the additive genetic relatedness matrix (or its 

inverse), makeD()requires a pedigree as the main input.  The pedigree must contain three 

columns, ordered ID, Dam, Sire, and the rows are ordered such that all parents occur in the ID 

column before their offspring (if not, see fixPedigree()in pedantics; Morrissey & 

Wilson, 2010).  All unknown parents (e.g., the base population), should be indicated with “NA”, 

“0”, or “*”:

id dam sire
1  NA   NA
2  NA   NA
3   2    1
4  NA    1
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The output of makeD() is a list of objects, from which the inverse of the dominance relatedness 

matrix can be extracted in two forms, depending upon the program in which it is intended to be 

used.  First, the output Dinv is the inverse of the sparse matrix D and can be included in an 

animal model using MCMCglmm, as demonstrated below (see the MCMCglmm tutorial in the 

Appendix A for more details):

> warcolak.ped <- warcolak[, c(1:3)]
> Dinv <- makeD(warcolak.ped)$Dinv
> warcolak$IDD <- warcolak$ID
> model.MCMC <- MCMCglmm(phenotype ~ 1, 
+   random = ~ID + IDD, data = warcolak, 
+   ginverse=list(ID = Ainv, IDD = Dinv))

The object listDinv is the second form by which the inverse of the dominance 

relatedness matrix is returned from makeD().  It is formatted so as to facilitate inclusion in 

either ASReml or the ASReml-R package.  This object is in the form of ASReml's general inverse 

list (also referred to as a g-inverse or giv; Gilmour et al., 2009), which contains the non-zero 

elements of the lower triangle of a sparse matrix, in row order.  This can be used to include 

dominance as a random effect in the asreml() function in R (more details in Appendix A):

> ginvD <- makeD(warcolak.ped)$listDinv 
> model.asr <- asreml(phenotype ~ 1, 
+ random = ~ped(ID) + giv(IDD), data = warcolak,
+ ginverse = list(ID = ginvA, IDD = ginvD))

The listDinv object can also be written to a text file for inclusion in analyses using the 

standalone ASReml program (Appendix A).  Further, this format is very similar to what 

WOMBAT requires, however, the first two columns must instead be ordered “column” and then 

“row” (the opposite order of listDinv) and the log determinant of D must also be provided.  

The first two columns of the list can easily be switched in R before saving the inverse to a file.  

The log determinant is returned as the object logDet in makeD() (Appendix A).
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Dominance relatedness matrix construction: makeDsim()

Ovaskainen et al. (2008) elegantly explain how eqn. 1 yields an approximation of ∆ij and 

demonstrate a more accurate method, especially for complex pedigrees, to obtain estimates of D

through iteration.  Briefly, their method explicitly traces alleles through a pedigree, thereby 

incorporating effects of inbreeding and alternative routes by which alleles can be shared (two 

processes left out of eqn. 1).  By repeatedly implementing this method, an estimate of the 

coefficient of fraternity (i.e., the probability two individuals share both alleles identical by 

descent) is produced and standard errors (diminishing in magnitude with an increase in number of 

iterations) for the estimates in the D matrix can be calculated.  The difference between the 

coefficients of fraternity derived from this method versus eqn. 1 are explained in Ovaskainen et 

al. (2008, particularly Figure 2.1C).  The function makeDsim() implements this method as 

described in the appendix to Ovaskainen et al.  R code, such as makeDsim(warcolak.ped, 

N = 10000, calcSE = TRUE), will construct the D inverse in matrix and list formats for 

use in an animal model.  The resulting output can then be supplied to MCMCglmm, asreml, 

ASReml, or WOMBAT as described above and indicated in Appendix A.  The argument N = in 

makeDsim supplies the number of iterations and thereby influences the standard error of each 

entry in D.  

Epistatic relatedness matrix construction

In addition to the dominance matrix, the three digenic epistatic relationship matrices (AA, AD,

and DD) can be constructed using the functions makeAA() and makeDomEpi()(for example 

coefficients of relatedness due to digenic epistasis, see p. 145 of Lynch & Walsh, 1998).  The 

latter of these two functions can construct and invert D, AD, and DD, all at once to save 
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computing time.  The results returned by both of these functions can be passed to MCMCglmm, 

asreml, ASReml, and WOMBAT in the exact same way as previously discussed for makeD().

Sampling Covariances and Confidence Intervals

One difficulty when estimating non-additive genetic variances is that the covariance between 

relatives due to non-additive genetic effects is highly confounded with other sources of 

similarities between relatives (e.g., full siblings also display phenotypic similarities due to shared 

additive, maternal, and environmental effects).  The sampling (co) variances for all random 

effects in an animal model can be informative for determining the extent to which random effects 

are confounded.  These (co) variances of the variance estimates are derived from the ‘Average 

Information’ matrix in animal models that utilize the Average Information algorithm (Gilmour et 

al., 1995) to obtain the Residual Maximum Likelihood (REML) parameter estimates.  The 

function aiFun() extracts the sampling (co) variances from the Average Information matrix in 

asreml, allowing researchers to evaluate the precision and extent to which variance components 

are correlated with one another: 

> aiFun(model = model.asr, Dimnames = c(“Va”, “Vd”, “Ve”))

Further, Appendix A demonstrates how a vector of these (co) variances can be obtained from the 

standalone ASReml or WOMBAT programs and used in R.  The sampling (co) variances are 

organized into a matrix with the sampling (co) variances of each variance component as the 

diagonal and below-diagonal elements and correlations as the above-diagonal elements.   

MCMCglmm uses a Bayesian approach to fitting models, not REML, but similar evaluations can 

be obtained by inspecting the posterior distributions and autocorrelation for variance components 

(Appendix A).  
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Determining the extent to which variance components are confounded with one another 

can also be achieved after an asreml analysis by examining the profile likelihood surface of 

each component using proLik():

> profile.add <- proLik(model.asr, component = 

“ped(ID)!ped”)

A profile likelihood is a representation of the model log likelihood when projected onto the 

parameter space for one particular parameter (or subset of parameters; Meyer, 2008).  The change 

in the model log likelihood (calculated as a likelihood ratio test statistic) can then be estimated 

along a range of values for a particular parameter, producing a profile likelihood surface.  When 

graphically depicted, using plot.proLik(profile.add), the profile likelihood surface of 

each variance component in an animal model (Figure 2.1) can be visually inspected to yield 

insights into the ability of the pedigree structure to produce precise and unconfounded variance 

component estimates (Meyer, 2008).  An additional utility of profile likelihoods is that they can 

be used to determine confidence intervals for the variance components estimated in a mixed 

model.  This is often a more appropriate method than using the standard errors (or sampling 

variances from the Average Information matrix; Meyer, 2008).  Approximate 1- α upper and 

lower confidence limits can be obtained when using the proLik() function, for example by: 

profile.add$UCL and profile.add$LCL, respectively.  The accuracy of the 

approximated confidence limits can be set with the threshold argument.

Additional functions

A few other functions are included in nadiv and may be useful to others working with pedigrees 

and sparse matrices (matrices containing mostly zeroes) in R.  Notably, makeA() constructs the 

additive genetic relatedness matrix.  sm2list() converts a sparse matrix (see the Matrix
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package) to a list consisting of three columns (“row”, “column”, and value – the last being 

labeled by the user) that contain all non-zero, lower triangle elements of a matrix in row order.  

Finally, double first cousins are an informative relationship for estimating many types of genetic 

variance (e.g., Fairbairn & Roff, 2006).  The function findDFC() determines the number of 

unique pairs of double first cousins present in a pedigree.   

Space, Speed, and Saving

Constructing the inverse of D can require a large amount of computer memory and time for large, 

complex pedigrees.  Although some modified methods to address these constraints exist (e.g., 

Hoeschele & vanRaden, 1991; Schaeffer, 2003), the functions contained in nadiv can be 

executed in a timely manner for the size and complexity of pedigrees usually studied in ecology 

and evolutionary biology (< 10,000 individuals), even on personal computers.  Additionally, 

automatic parallelization of the processing is available for many of the functions in nadiv (the 

default is always to use a single processor), which can often result in dramatic time savings 

(Appendix A).  Not all computer architectures will allow users to take advantage of this capability 

in R, so I refer those interested to the package documentation of nadiv for more consideration.  

Because creating D every session is time prohibitive for large populations, it is advisable to save 

non-additive inverse matrices to a hard drive.  The R functions save() and load() are useful 

to store and retrieve, respectively, because they preserve the R attributes that are required by the 

animal model programs in R (i.e., MCMCglmm and asreml).

More information about the functions in nadiv can be obtained from the package 

documentation (see the Comprehensive R Archive Network website: http://cran.r-

project.org/web/packages/nadiv/index.html).  For a more thorough treatment of how to use the 

functions in nadiv, please see Appendix A tutorials.
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Figure 2.1. Log profile likelihoods for the additive (top) and dominance (bottom) genetic 
variance components estimated from the warcolak dataset.  Plots were generated using the 
nadiv function proLik()to obtain each profile from an animal model fitted using the software 
ASReml-R and subsequently graphed using plot.proLik().  The 95% confidence interval 
limits for each variance estimate are indicated where the horizontal dashed line (corresponding to 
the log Likelihood Ratio Test statistic = -1/2χ2

0.05,1) intersects the profile.  X-axis labels 
correspond to the ASReml-R model terms.
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CHAPTER 3

Sex chromosome linked genetic variation affects estimates of additive genetic (co)variation.

Abstract

Evolutionary theory predicts that genetic variation for traits undergoing sexually antagonistic 

selection will accumulate on the sex chromosomes, reducing the magnitude of intralocus sexual 

conflict.  The inheritance pattern of sex chromosomes creates major differences in the 

contribution of additive variance to phenotypic resemblance between relatives for the sex 

chromosomes versus the autosomes and yet very few empirical studies explicitly separate these 

two sources of variance.  We use simulations to show how failure to include sex-linked additive 

(co)variances in analytical models affects the accuracy and precision of additive genetic 

(co)variance estimates.  We compare results from simple (half-sib) to more complex (double first 

cousin) breeding designs and between two analytical methods (observed variance components 

and animal models).  Our results show that when sex-linked variance is included in an analytical 

model, only the animal model analyses of the double first cousin pedigree yield both unbiased 

and precise estimates of sex-specific additive genetic (co)variances.  When sex-linked variance 

was not included, estimates of sex-specific autosomal additive variances were biased (often 

>100%).  Further, analytical models that did not estimate sex-linked (co)variances yielded biased 

estimates of the sex-linked between-sex additive genetic correlations.  We interpret our results 

with respect to how they impact our identification of signatures of intralocus sexual conflict.
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Introduction

Partitioning phenotypic variation into the constituent genetic and non-genetic sources of variation 

is the central paradigm in evolutionary quantitative genetics (Roff 2006).  The component of 

phenotypic variation most studied to date is additive genetic variance, which summarizes the 

variance among individuals in the sum of each individual’s average genetic effects for a trait (i.e., 

the breeding values; Falconer 1989).  Estimates of additive genetic variance enable us to address 

two classes of questions in evolutionary biology (Turelli 1988; Houle 1992).  The first class is 

concerned with predicting the evolutionary responses to artificial selection (reviewed in Hill and 

Caballero 1992) or natural selection (Kruuk et al. 2008) using the breeders’ equation (Lush 1937; 

Lande 1979) or the “Secondary Theorem of Natural Selection” (Robertson 1966, 1968; Price 

1970).  The second class of questions is concerned with identifying the forces that shape additive 

genetic variance in a population (Turelli 1988).  They specifically address how selection, 

mutation and drift change additive genetic variance (e.g., Reeve 2000; Jones 2003), how trait 

types differ in their relative amounts of additive variance (e.g., Mousseau and Roff, 1987; Roff 

and Mousseau 1987; Houle 1992), and the consequences of shared genetic variation for the 

correlated evolution of sets of traits (Lande 1979, 1980a), leading to quantitative genetic 

predictions regarding the divergence among populations (Steppan et al. 2002).

Estimates of additive genetic variance typically only focus on autosomal models of 

additive genetic variance; neglecting potential contributions from the sex chromosomes in species 

with chromosomal sex-determination.  Most standard quantitative genetic textbooks (e.g., 

Falconer 1989; Roff 1997; Lynch and Walsh 1998) restrict their focus to the autosomes when 

discussing the covariance between relatives due to the expected contribution of additive genetic 

effects.  Covariance between relatives due to additive genetic effects on the sex chromosomes is 

treated, at best, as an extra or complicating detail.  Therefore, sex chromosome linked genetic 
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effects are treated as special cases and not incorporated into general methodologies for estimating 

additive genetic variance from laboratory breeding designs and wild populations.  This is 

unfortunate, because evolutionary biology is replete with theory predicting genes to accumulate 

on the sex chromosomes, for example when they: facilitate the evolution of sexual dimorphisms 

or the resolution of intralocus sexual conflict (Fisher 1958; Charlesworth and Charlesworth 1980; 

Rice 1984; Fairbairn and Roff 2006; but see Charlesworth et al. 1987; Fry 2010), are involved in 

the evolution of female preferences and attractive male traits (Lindholm and Breden 2002; 

Kirkpatrick and Hall 2004), or play a role in prezygotic isolation leading to species differences 

and reinforcement of mating preferences (Charlesworth et al. 1987; Coyne and Orr 1989; Ritchie 

and Phillips 1998; Hall and Kirkpatrick 2006).  Despite a large body of theory predicting the 

accumulation of additive genetic variance on the sex chromosomes, the impact of sex-

chromosomal additive genetic variance on sex-specific additive variances and between-sex 

additive genetic correlations is currently unknown.  In particular, sex-linked, sexually 

antagonistic genetic variance can play a major role in structuring between-sex additive genetic 

correlations and quantifying this influence may reveal key insights into the processes facilitating 

a resolution of intralocus sexual conflict.  

For traits that differ between the sexes (e.g., sexual dimorphisms in secondary sexual 

characteristics), alleles with opposing effects in females and males evolve in response to sexually 

antagonistic selection and contribute disproportionately to genetic variance in fitness 

(Charlesworth and Hughes 1999; Connallon and Clark 2012, 2013), a pattern seen in many 

empirical studies of plants and animals identifying sexual antagonism (e.g., Chippindale et al. 

2001; Fedorka and Mousseau 2004; Brommer et al. 2007; Foerster et al. 2007; Cox and Calsbeek 

2010; Innocenti and Morrow 2010; Delph et al. 2011; Lewis et al. 2011; Mokkonen et al. 2011). 

This leads to a negative between-sex genetic correlation for fitness, which is considered a 
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signature of intralocus sexual conflict (Chippindale et al. 2001).  However, this does not 

necessarily require a negative autosomal between-sex additive genetic correlation.  Indeed, Rice’s 

(1984) model prediction and subsequent empirical work (Chippindale et al. 2001; Gibson et al. 

2002; Pischedda and Chippindale 2006) point to a sex chromosomal location of the intralocus 

sexual conflict that would result in a negative sex-linked between-sex additive genetic correlation 

for fitness.  However, to date many attempts to quantify between-sex additive genetic correlations 

have not explicitly partitioned this correlation into separate autosomal and sex-chromosomal 

contributions (e.g., Calsbeek and Sinervo 2004; Fedorka and Mousseau 2004; Brommer et al. 

2007; Foerster et al. 2007; Delcourt et al. 2009). 

Explicitly accounting for the contribution of sex-linked (co)variance to genome-wide 

additive genetic (co)variances is necessary because the inheritance pattern for sex chromosomes 

produces a different expected covariance in additive genetic effects between many types of 

relatives, as compared to that of the autosomes (e.g., tables 4 and 5 in Fairbairn and Roff 2006).  

As a simple example, consider male and female full-siblings in a system of XX/XY chromosomal 

sex-determination (the same will apply in ZZ/ZW, but the results will be reversed between the 

sexes).  The contribution of genome-wide additive genetic variance to the expected phenotypic 

covariance between full-brothers is ½ the autosomal plus the Y-linked and ½ the X-linked 

additive genetic variances.  For full-sisters the expected covariance is due to ½ the autosomal plus 

¾ the X-linked additive variances.  Consequently, the genome-wide additive variance is greater 

than the quantity estimated from either full-brothers or full-sisters if only autosomal contributions 

are assumed.  For example, an assumption of an autosomal basis to all phenotypic resemblance 

between full-sisters will only account for ½, and not ¾, of the X-linked variance.  Although 

genetic variation on the sex-specific sex chromosome (Y or W), may be important in some 

species (e.g., Rice 1996; Charlesworth and Charlesworth 2000; Jobling and Tyler-Smith 2000; 
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Lindholm and Breden 2002; Kirkpatrick and Hall 2004; Otto et al. 2011), across taxa with 

chromosomal sex determination systems the Y and W chromosomes are often absent or 

degenerate.  In the present analyses we restrict our focus to variance on the sex chromosome that 

both sexes share (X or Z) and only consider X- or Z-linkage when using the term “sex-linked”

(note, the effect of dosage compensation is considered elsewhere).  

The difference in copy number for the sex chromosome that both sexes share, causes the 

variance in sex-linked additive genetic effects to differ between the sexes by a factor of two 

(Bulmer 1980; Fernando and Grossman 1990; Lynch and Walsh 1998).  This last point is a long-

standing (Bohidar 1964; James 1973) but underappreciated relationship which further alters the 

expected contribution of additive genetic effects to the phenotypic covariance between relatives 

beyond that discussed above.  The copy number difference between the sexes also reduces the 

maximum range of the between-sex additive genetic correlation on the sex chromosomes.  This 

reduction is because sex-linked additive allelic effects make different contributions to the 

phenotypic variance in males or females.  Whereas the maximum range for correlated genetic 

variation on the autosomes is -1 to +1, the expectation for correlated variance on the shared sex 

chromosome (X or Z) is only from -1/√2 (≈-0.71) to +1/√2 (≈0.71) (see Animal models in 

Methods below).  

The potential effects of sex-linked additive variance on estimates of additive genetic 

(co)variation made under assumptions of autosomal inheritance should not be dismissed as 

simply a methodological concern in quantitative genetic analyses.  The departures from the 

autosomal model caused by sex-linkage are, in and of themselves, important properties to 

consider when determining the location of sexually antagonistic genetic variation or elucidating 

the role of genetic variation in population responses to selection.  Further, many commonly 

studied organisms (e.g., Drosophila and Silene) have relatively large sex chromosomes (Cowley 
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et al. 1986; Grabowska-Joachimiak and Joachimiak 2002), which might be associated with high 

levels of sex-linked genetic variance (Fairbairn and Roff 2006).  Table 3.1 contains a survey of 

the (few) studies to our knowledge which have sought to directly quantify the relative amounts of 

additive genetic variation on autosomes versus the sex chromosomes.  These often report 

appreciable amounts of sex-linked variance: across studies, the means (medians) of the proportion 

of genome-wide additive genetic variance that can be attributed to sex-linked additive genetic 

variance range from 2.7% (0%) to 50.7% (41.6%) (Table 3.1).

To a first approximation, the effects of un-modeled sex-linked variance on additive 

genetic variance estimates have been previously considered.  It has been recognized that sex-

linked variance causes heritability estimates derived from different methods to differ (e.g., sire on 

daughter versus sire on son estimates where sires and sons do not share an X chromosome, but 

sires and daughters do) and, therefore, the importance of considering sex-linkage has been

assessed via these comparisons (Sheridan et al. 1968; Cowley et al. 1986; Cowley and Atchley 

1988; and reviewed in Beilharz 1963).  More recent analyses have incorporated estimates of sex-

linked (co)variances to explicitly account for the contribution of these (co)variances to genome-

wide additive genetic (co)variances (Chenoweth and Blows 2003; Mezey and Houle 2005; 

Chenoweth et al. 2008).  However, to date, the general effect of the existence of sex-linked 

variance on estimates of additive genetic variance has not been explored.

Here we ask the question, do models that assume a fully autosomal basis for covariance 

between relatives yield biased estimates of sex-specific additive genetic variances and between-

sex additive genetic correlations when sex-linked additive genetic variation is present?  We begin 

by presenting the statistical genetic theory underlying sex-linked additive genetic variance with a 

particular focus on the common biological assumptions made when implementing mixed effect 

statistical models.  We then undertake simulations to construct phenotypes with a known 
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quantitative genetic architecture (consisting of autosomal additive, sex-linked additive, and 

residual variances) for subsequent analysis with two widely used variance partitioning methods.  

We find that sex-specific additive genetic variance estimates can be biased when sex-linked 

additive variance is not explicitly considered in quantitative genetic analyses.  The magnitude of 

the bias will depend on both the amount of sex-linked variance and the pedigree structure of each 

analysis.  We also find that estimates of the between-sex genetic correlation will be biased when 

models only utilize autosomal expectations.      

Methods

The model of sex-linked additive genetic variation

The statistical theory behind the estimation of additive genetic variation on the sex chromosomes 

has a long history (Hogben 1932; Bohidar 1964; James 1973; Fernando and Grossman 1990), as 

does variation in the interpretation of the underlying assumptions of this theory (Becker 1967; 

Sheridan et al. 1968; Dickerson 1969; Kempthorne 1969; Pirchner 1969; James 1973; Grossman 

and Eisen 1989; Kent et al. 2005a).  To clarify the latter, we briefly present the underlying theory 

and assumptions germane to analyzing sex-linked variation.

The basic model of sex chromosomal additive variance assumes that additive allelic 

effects are equal in the two sexes for all loci (i.e., no genotype-by-sex interaction on the sex 

chromosomes), and that the population is in gametic equilibrium (Fernando and Grossman 1990).  

Therefore, the model assumes no mechanism of global sex chromosome dosage compensation 

[Muller 1931; Lucchesi 1978; we note that dosage compensation will not qualitatively change the 

results and conclusions below (Wolak et al., unpublished manuscript)].  This model also assumes 

that the un-shared sex chromosome (i.e., the Y or W) is devoid of any alleles affecting the trait of 

interest (Fernando and Grossman 1990), although genetic variation on the Y or W chromosome 
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can be estimated independently (e.g., Postma et al. 2011).  A final assumption is that alleles 

influencing the trait are not exchanged between the two different sex chromosomes (i.e., there is 

no recombination between the X and Y or Z and W during meiosis), such as observed in the 

pseudoautosomal regions of sex chromosomes (Otto 2011).

Under the assumptions stated above, the sex-linked additive genetic value at a locus for a 

trait in the homogametic sex (gCC) and heterogametic sex (gC) is:

gCC=αp-hom+αp-het (1)

gC =αp-hom (2)

(Fernando and Grossman 1990) where α is defined as the average additive genetic effect of an 

allele at a sex-linked locus.  The subscripts “p-hom” and “p-het” distinguish between the alleles 

contributed by the homogametic and heterogametic parent, respectively.  From equations 1 and 2, 

the relationship between genotypic values s, or the sum of genetic values for all sex-linked loci, 

of the two sexes is shom=2shet (shom=∑gCC,i and shet=∑gC,i).  Therefore, the mean genotypic value 

of the homogametic sex individuals is twice that of the heterogametic sex individuals in a 

population.  For a single locus, the variance in allelic effects is defined as Var(α)=Var(αp-

hom)=Var(αp-het).  Following from equations 1 and 2, the (co)variances in additive genetic values 

summed across all sex-linked loci in the homogametic and heterogametic sexes are:

Var(shom)=2∑Var(α) (3)

Var(shet)=∑Var(α) (4)

Cov(shom,shet)=∑Cov(α,αp-het)+Cov(α,αp-hom)=2∑Var(α) (5)
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(Fernando and Grossman 1990).  Note that we have left out the dominance contributions to 

genetic variance for simplicity (see ch. 24 Lynch and Walsh 1998).

Under the above assumptions, the expected sex-linked additive genetic variance for non-

inbred homogametic sex individuals in a population (σ2
s-hom) is twice that of the non-inbred 

heterogametic sex individuals in the population (σ2
s-het).  Because σ2

s-hom can be expressed as a 

linear function of σ2
s-het (i.e., σ2

s-hom=2σ2
s-het), the expectations for additive genetic allelic effects 

of the heterogametic sex can be expressed in terms of σ2
s-hom (Bulmer 1980).  Similarly, the 

covariance between sexes can be expressed as a linear function of σ2
s-het (see Animal models

below for more details).  This is done to simplify analytical models used to estimate sex-linked 

additive genetic.  

Simulation approach

We used an individual-based variance components simulation approach (ch. 4 Roff 2010) to 

uncover the bias in estimates of additive genetic (co)variances arising from the failure to include 

sex-linked additive variance in the underlying models.  We refer to the two sexes as either the 

homogametic (e.g., XX or ZZ) or heterogametic (e.g., XO or ZW) sex.  Homogametic and 

heterogametic phenotypes were modeled as:

yhom=µ+ahom+shom+e (6)

yhet=µ+ahet+shet+e (7)

where an individual phenotype y is a linear combination of a population mean µ (=0) and random 

effects representing sex-specific autosomal additive genetic effects (a) sex-specific sex-linked 

additive genetic effects (s) and residual effects (e).  The genetic and residual effects were 
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simulated as Gaussian distributions of random effects following the methods in Van Vleck (1994; 

details in Appendix B1).  

Residual and autosomal additive genetic variances for males and females were constant 

in all simulations (σ2
e-hom=σ2

e-het=σ2
a-hom=σ2

a-het=50) and the autosomal between-sex additive 

genetic correlation was always one (σa-hom,het=50).  We chose seven values for the sex-linked 

additive genetic variance, expressed as the proportion of phenotypic variance attributed to sex-

linked additive variance in the homogametic sex (hs
2=σ2

s-hom/σ2
P).  Note that when the sex-linked 

variance in the heterogametic sex is expressed as a function of the sex-linked variance in the 

homogametic sex (see above), the phenotypic variances of the heterogametic sex is less than the 

homogametic sex.  The range of hs
2 values simulated (Table 3.2) encompasses the range of sex-

linked additive variance estimates reported to date (Table 3.1).  The range of hs
2 values was 

simulated for each of three different values of the sex-linked between-sex additive genetic 

correlations, which span the entire parameter space (1/√2≈0.71, 0, and -1/√2≈-0.71).  

The change in additive (i.e. autosomal plus sex-linked) genetic variance and between-sex 

correlation reflects the influence of sex-linked additive variance on each estimate.  The high 

genomic heritability (autosomal+sex-linked; range: 0.5-0.71) for simulated traits was chosen to 

avoid model convergence difficulties when employing the restricted maximum likelihood 

(REML) techniques in the analytical models described below (see Analytical models).  This 

typically occurs when too many parameters occupy the area close to the boundaries of parameter 

space (i.e., variance components near zero when they are restricted to be positive).

Pedigrees considered

The extent to which autosomal expectations of covariances between relatives do not properly 

model sex-linked additive covariances depends on the types of relationships contained in the 



51

pedigree of a particular study design or population.  To determine the impact of pedigree structure 

on the bias introduced by sex-linked additive variance, we chose to focus on two laboratory 

breeding designs in our simulations: the paternal half-sib and the double first cousin design 

(Fairbairn and Roff 2006).  The half-sib (HS) pedigree was composed of 60 sires, each mated to 

10 dams, resulting in 10 offspring per dam-family (five of each sex).  Although the pedigree 

included sires and dams, phenotypes were only simulated for the offspring generation.  We did 

this to mimic half-sib laboratory breeding designs and analyses which typically only utilize 

phenotypic information from the offspring generation.  Thus, the HS pedigree consisted of 6,660 

individuals, but phenotypic information was only incorporated for 6,000 individuals (50.5% 

individuals of the homogametic sex).

The double first cousin (DFC) pedigree consisted of 50 breeding units of the form 

described in Fairbairn and Roff (2006) and depicted in figure 3.1.  This breeding design creates 

full- and half-sib relationships among offspring within a “mating group”, first and double first 

cousins between offspring among “mating groups”, and grandparent-grandoffspring, parent-

offspring, and uncle/aunt-nephew/niece relationships between generations (Figure 3.1).  A single 

unit of this DFC design yields 120 individuals from three generations.  Since the original 

specification of the design includes phenotypic records on all individuals (Fairbairn and Roff 

2006), we simulated phenotypes for all individuals in the pedigree.  Both pedigree size and the 

number of individuals with phenotypic records equal 6,000 in our simulations of the DFC design 

(53.3% individuals of the homogametic sex).

While extremely common in use, the HS design contains fewer types of relatives in 

general as well as fewer types of relatives informative for disentangling sex-linked sources of 

additive genetic variance from other contributions to phenotypic variance.  The DFC modifies the 

paternal half-sib HS design to create sets of single and double first cousin relationships between 
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families.  When all three generations in the DFC design are included, the great variety of 

relationships increases the power to separate sex-linked additive variance from other 

contributions to phenotypic variance in laboratory breeding designs (Fairbairn and Roff 2006; 

Meyer 2008).  We focus on the HS and DFC designs, because they represent pedigree structures 

that contain either very few or many different types of pair-wise relationships between 

individuals, respectively.  We expect the variety of pair-wise relationships for most other 

pedigrees (e.g., wild population pedigrees) to fall somewhere in between the HS and DFC 

designs. 

Analytical models

In addition to comparing two pedigree structures, we contrast two analytical models.  For 

half-sib experiments in general, empiricists can analyze phenotypic data using either (1) a nested 

mixed effects linear model (e.g., sire and dam variance components model; Cowley et al. 1986) 

or (2) the mixed effects ‘animal model’ (Henderson 1973; Lynch and Walsh 1998; Kruuk 2004).  

Therefore, we investigated both analytical approaches with the HS simulations.  However, for 

multigenerational pedigrees, such as the DFC design, only the animal model is applicable.  We 

adopted a bivariate approach, which models females and males as separate “traits” (Mrode 2005), 

thus enabling us to obtain sex-specific genetic variance and between-sex genetic correlation 

estimates.  Our approach for both analytical models was to analyze the simulated data by first 

modeling both autosomal and sex-linked sources of additive genetic variance.  These “informed” 

models assess our ability to obtain unbiased estimates of additive genetic variance from the 

analytical models as well as the two pedigree designs.  We then conducted a “naïve” model, 

where only autosomal patterns of inheritance were included in the statistical model.  Given that 

all data contained sex-linked variance (Table 3.2), we used the naïve model to elucidate the bias 
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present in estimates of additive genetic (co)variances for females and males when implementing 

the analytical mixed effects models and to highlight the difference in bias between the HS and 

DFC pedigree designs.  

Nested mixed effects model of observed variance components    

We used a bivariate nested mixed effects linear model (e.g., Cowley et al. 1986; Cowley and 

Atchley 1988; Chenoweth and Blows 2003) to decompose phenotypic variance in the HS 

breeding design into the observed sire (σ2
sire), dam (σ2

D), and within-family (σ2
W) variances for 

each sex and the between-sex sire, dam, and within-family covariances.  Observed variance 

component estimates from the nested linear model were obtained using restricted maximum 

likelihood (REML) in R (v2.15.0, R Development Core Team 2012) using the asreml package 

(v3.0 Butler et al. 2009).  The observed components of variation are expressed in terms of the 

genetic (or causal) variance components under an assumed genetic model using an appropriate 

design matrix (following Chenoweth et al. 2008; see Appendix B1).  A bivariate model, where 

the observed variance components are estimated for each sex, is necessary because the 

contribution of sex-linked variance to the observed variance components differs between the 

homogametic and heterogametic sexes.  This model produces estimates of the sex-linked variance 

separately for the homogametic (Vs-hom) and heterogametic (Vs-het) sexes.  This is contrary to the 

animal model which estimates the heterogametic sex-linked variance as a linear function of the 

homogametic sex-linked variance (see below).

Animal models

We used the mixed effects animal model (Henderson 1973; Lynch and Walsh 1998; Kruuk 2004), 

which directly estimates genetic and non-genetic variance components to analyze data for both 
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the HS and DFC designs.  As noted in the Pedigrees considered section, animal model analyses 

were conducted on phenotypic data from all individuals in the DFC design, but only the offspring 

generation of the HS design.  However, the full pedigree information was used from each design.

We used the “makeS()” function from the nadiv package (v2.11) in R to construct the 

inverse of the sex-linked additive genetic relatedness matrix according to the algorithm developed 

by Fernando and Grossman (1990).  This matrix was used with the asreml package for R (v3.0 

Butler 2009) to solve the animal model using restricted maximum likelihood.  We used a 

bivariate animal model to estimate the autosomal additive genetic, sex-linked additive genetic, 

and residual variances in each sex separately.  Detailed statistical descriptions of both the naïve 

and the informed animal models can be found in the Appendix B1.

Sex-linked variance of the heterogametic sex (σ2
s-het) was estimated as a linear function of 

the homogametic sex-linked variance (σ2
s-hom).  For the heterogametic sex (only one copy of the 

shared sex chromosome X or Z), an animal model estimates the sex-linked additive genetic 

variance for a hypothetical set of relatives in the base population expressed as a linear function of 

individuals that are diploid for the shared sex chromosome.  We will represent the variance in 

these hypothetical homogametic base population individuals of the heterogametic sex as σ2
s-

het(hom) (therefore, σ2
s-hom=σ2

s-het(hom)=2σ2
s-het).  The covariance between the homogametic sex and 

the heterogametic sex, expressed as a linear function of the homogametic sex, is σ s-hom,het(hom).  

Thus, the maximum (minimum) sex-linked between-sex additive genetic correlation reported by 

animal model software is one (minus one) when σ2
s-hom=σ2

s-het(hom)=σs-hom,het(hom).  When this 

correlation [σs-hom,het(hom)/√( σ2
s-homσ2

s-het(hom))] is instead expressed as the raw (co)variances in sex-

linked additive genetic effects, in other words when the sex-linked variance in the heterogametic 

sex is not expressed as the variance in hypothetical diploid individuals, but rather as that of the 

individuals of the heterogametic sex and likewise for the sex-linked between-sex covariance [i.e., 
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0.5σs-hom,het(hom)/√( σ2
s-hom0.5σ2

s-het(hom))=σ s-hom,het/√( σ2
s-homσ2

s-het)], the maximum (minimum) sex-

linked between-sex correlation is 1/√2≈0.71 (-1/√2≈-0.71).  We use Vi and COVi to denote 

REML estimated parameter variances and covariances of the ith effect, as opposed to the true 

values in the data set, as set by the simulations (for which we have used the general notation σ2
i

and σi).  Notably, estimates of the sex-linked (co)variance components are expressed as a function 

of Vs-hom (i.e., Vs-hom, V s-het(hom), and COVs-hom,het(hom)).   

Fitting a bivariate model (see equations B1.4 and B1.5 in Appendix B1) necessitates a 

separate residual variance to be estimated for each sex (but no residual covariance between the 

sexes; Mrode 2005).  Failing to do so could reduce the power to detect sex-linked variance as 

well as bias estimates of other variance components (Kent et al. 2005ab).  The resulting 

parameter estimates from the bivariate animal model are Vs-hom representing the homogametic sex 

base population individuals and Vs-het(hom) representing the hypothetical heterogametic sex base 

population individuals that have two copies of the shared sex chromosome.  The estimated 

variance in sex-linked additive genetic effects for the heterogametic sex (Vs-het) is therefore ½Vs-

het(hom) (where Vs-het(hom) is the variance parameter estimate from the animal model) and similarly 

the estimated covariance in sex-linked additive genetic effects between the homozygotic and 

heterozygotic sexes (COVs-hom,het) equals ½COVs-hom,het(hom) (where COVs-hom,het(hom) is the 

covariance parameter estimate from the animal model).

   

Descriptor statistics

For both pedigree structures, we used the techniques described above to simulate phenotypes 

based on each possible parameter combination (Table 2).  For every pedigree structure and 

parameter combination, 5,000 sets of phenotypes were simulated and analyzed using the mixed 

models (“naïve” and “informed” and observed variance components models and animal models).  
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From these models, estimates of the autosomal and (from the informed model) sex-linked 

additive genetic and residual (co)variances were obtained.  We report the proportion bias in 

additive genetic variance estimates, for the homogametic and heterogametic sexes separately, as: 

(Va–σ2
a)/σ

2
a, where Va is the autosomal additive genetic variance estimated by the mixed model 

and σ2
a is the variance of the simulated autosomal additive genetic effects.  The additive genetic 

variance bias estimates were sorted from smallest to largest and the 125th and 4,875th values were 

used as the lower and upper limits, respectively, encompassing the 95% quantile of estimates.

The between-sex additive genetic correlation was estimated from the naïve model as:

hetahomahethomahethoma   VVCOVr /,, (8)

and from the informed model, which incorporates both autosomal and sex-linked additive genetic 

effects, was calculated as:

     hetshetahomshomahethomshethomahethomg   VVVVCOVCOVr /,,, (9)

We will refer to the between-sex additive genetic correlation from the naïve model (equation 8) 

as the autosomal between-sex genetic correlation and from the informed model (equation 9) as 

the genomic between-sex genetic correlation.  Note, equation 9 uses the sex-linked between-sex 

covariance COV hom,het, however an animal model returns a different sex-linked between-sex 

covariance estimate (COV hom,het(hom)=twice the expected value of σhom,het; see Model of sex-linked 

additive genetic variation and Animal models).  Again, estimates were sorted in increasing order 
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and the 95% quantile was calculated.  All simulations and analyses were performed in the R 

statistical software (v2.15.0, R Development Core Team, 2012). 

Results

“Informed” models: sex-specific additive variance

Autosomal additive variance components estimates from the observed variance components 

informed model of the HS pedigrees tend to be accurate (mean bias close to zero), but not precise 

(large 95% quantiles; Figure 3.2A-C).  Particularly, the precision in the homogametic sex is 

worse than that of the heterogametic sex, as observed by the larger 95% quantiles.  Sex-linked 

additive variance estimates for the heterogametic sex are overestimated when the simulated sex-

linked variance is low (hs
2<0.2; Appendix B2 Figure B2.1A-C).  Animal models of the HS design 

are unable to separate autosomal from sex-linked additive variance in the homogametic sex when 

the sex-linked between-sex genetic correlation is less than the maximum possible parameter value 

(<0.71; 2nd and 3rd columns in Figure 3.2).  This is seen in figure 3.2 by the increase in mean bias 

as hs
2 increases (Figure 3.2E,F; as well as the 100% underestimation of sex-linked additive 

variance in Appendix B2 Figure B2.2B,C).  Biases in autosomal additive variance estimates from 

the DFC pedigree design analyzed with informed animal models are zero for all parameter 

combinations (Figure 3.2G-I).  The animal model analyses are also sensitive to the starting values 

of the model parameters.  When we re-ran the HS models with starting values close to the 

simulated parameter values we obtained different estimates of autosomal, sex-linked, and residual 

variances (results not shown). However, we find that the log-likelihoods of these models were 

almost identical (<0.1% difference) to models where no starting values were intentionally 

assigned by us (ASReml assigns default starting values of 0.05 times the phenotypic variance for 
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all variances and values of 0.1 for all correlations).  This implies that these parameter estimates 

have large confidence intervals as a result of relatively flat profile likelihood surfaces.  

“Informed” models: between-sex genetic correlations  

The estimate of the genomic between-sex additive genetic correlation is unbiased when the HS 

pedigree is analyzed using the informed observed variance components models (Figure 3.3A-C).  

However, the animal model produces underestimates whenever the simulated between-sex 

correlation is less than the maximum value of approximately 0.71 (Figure 3.3D-F).  This 

departure from the expected value is most likely driven by the observed bias in the sex-specific 

additive variance estimates (Figure 3.2E,F).  Estimates of the genomic between-sex additive 

genetic correlation using an informed animal model and the DFC pedigree match the predicted 

values for the genomic between-sex correlation (dashed grey line; Figure 3.3G-I).

Overall, these results indicate that accurate and precise separation of autosomal and sex-

linked sources of additive genetic (co)variance is best accomplished with a complex pedigree 

structure (e.g., DFC), however, we note that the observed variance components analysis of the HS 

pedigree does produce unbiased (albeit imprecise) estimates.  

“Naïve” models: sex-specific additive variance

For both pedigrees and analytical models, sex-specific estimates of autosomal additive variance 

from naïve models are upward biased, with bias increasing as the sex-linked variance increases 

(hs
2; Figure 3.4).  For a given sex-linked variance (hs

2) and sex-linked between-sex correlation, 

the bias in sex-specific autosomal additive variance is greatest in the HS pedigree analyzed with a 

naïve animal model (Figure 3.4D-F) and lowest for the DFC pedigree analyzed with a naïve 
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animal model (Figure 3.4G-I).  Further, biases in the homogametic sex show a faster increase 

with increasing sex-specific additive variance (hs
2) than do biases in the heterogametic sex. 

Quantifying the bias in estimates of residual variance (the only other variance component 

in the naïve models) further indicates to which component(s) un-modeled sex-linked additive 

genetic variance is assigned when sex-linkage is ignored in naïve models (see Appendix B3 

Figure B3.1).  Overall these results indicate that, regardless of the method of analysis or pedigree, 

naïve models will often yield estimates of autosomal additive variance that are neither accurate 

estimates of the true autosomal additive variance nor accurate estimates of the genome-wide 

additive (autosomal+sex-linked) variance.  However, the autosomal additive variance estimates 

for the heterogametic sex in a HS pedigree analyzed with naïve observed variance components 

are the exception; estimates of autosomal additive variance from these naïve models equal the 

genome-wide additive variance (see Appendix B3 Figure B3.1, top row).

  

“Naïve” models: between-sex genetic correlations

The naïve observed variance components models failed to produce between-sex additive genetic 

correlations within the acceptable parameter space of correlations (from -1 to 1) when the 

between-sex additive genetic covariance and sex-specific additive variance estimates were used.  

This extreme bias is attributed to a failure of the model to produce reasonable estimates of the 

observed covariance components to which sex-linkage contributes (i.e., dam and within-family 

covariance).  Instead, we calculated the between-sex additive genetic correlation from the 

observed sire (co)variances:

hetsirehomsirehethomsirehethoma   VVCOVr /,, (10)
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This method does not suffer the extreme bias mentioned above, because sex-linked covariance 

does not contribute to the sire covariance.

In both pedigrees and for both analytical methods, estimates of the autosomal between-

sex genetic correlations (ra-hom,het) from naïve models are not significantly different (as judged by 

the limits of the 95% quantiles) from the expected genomic between-sex genetic correlations (rg-

hom,het) when the sex-linked between-sex genetic correlation is zero (Figure 3.5B,E,H).  However, 

when the sex-linked between-sex genetic correlation is 0.71, the autosomal between-sex genetic 

correlation (ra-hom,het) underestimates the expected genomic between-sex genetic correlations (rg-

hom,het) (Figure 3.5A,D,G).  For the DFC animal models and HS observed variance components 

models this bias increases as the sex-linked additive variance increases (Figure 3.5A,G), but this 

is not evident for animal model analyses of the HS pedigree, where the overall bias is not very 

large (Figure 3.5D).  When the sex-linked between-sex genetic correlation is -0.71, the observed 

variance components analysis of the HS pedigree and the animal model analyses of the DFC 

pedigree increasingly overestimate the genomic between-sex additive genetic correlation as the 

amount of sex-linked additive variance increases (Figure 3.5C,I).  Conversely, the autosomal 

between-sex correlation underestimates the genomic between-sex correlation when the animal 

model is used to analyze the HS pedigree (Figure 3.5F).  It is noteworthy that all naïve models 

under-estimate the autosomal between-sex genetic correlation (i.e., horizontal dashed line in 

Figure 3.5) for all parameter combinations, analytical models, and pedigree designs when sex-

linked variance is present.  In other words, analyses modeling only autosomal additive genetic 

effects produce underestimates of the true autosomal between-sex correlations, but these 

estimates better reflect the genomic (autosomal plus sex-linked) between-sex correlation in 

additive genetic effects.
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Discussion

We investigated how sex-linked additive genetic variance affects estimates of genetic 

(co)variances modeled under autosomal expectations of the covariance between relatives.  By 

simulating populations with known contributions of genetic variance components to phenotypic 

variance, we are able to show that bias occurs and that the magnitude of bias in sex-specific 

additive variances depends on the variety of relationships in the pedigree used, the method of 

statistical analysis, and the magnitude of sex-linked additive (co)variance.  We also find that 

estimates of the between-sex genetic correlation will be biased whenever the sex-linked between-

sex correlation is non-zero and sex-linked additive variance is present.

When sex-linked variance is explicitly modeled in an analysis, as in our “informed” 

models, the animal model analysis of the DFC pedigree and the observed variance components 

model analysis of the HS pedigree resulted in unbiased estimates of the sex-specific additive 

variances and between-sex additive correlations.  However, the informed animal model analyses 

of the HS design did overestimate autosomal additive variance in the homogametic sex.  

Although specifying starting values in the HS animal model which were close to the simulated 

values reduced the bias in the informed models, this approach is impractical as true values are not 

known when analyzing empirical data.  Further, the model fit with these altered starting values, as 

judged by the maximum of the log-likelihood function, provides no useful information to discern 

which set of variance parameter estimates better fit the data.  In other words, parameter estimates 

are accompanied by very large confidence intervals.  We interpret this as a failure of the animal 

model to correctly partition the phenotypic variance when very little information is provided by 

the pedigree to separate autosomal and sex-linked additive variance.

Although the observed variance components method produced mean biases near zero, the 

range of the 95% quantiles is quite large.  This indicates that the analytical method has very low 
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statistical power, despite the extremely large experimental design (6,000 phenotypes gathered 

from 10 offspring in each full-sib family of a nested half-sib design with 60 sires and 10 dams 

mated to each sire).  In an alternative approach, Mezey and Houle (2005) incorporate information 

from parent-offspring phenotypic covariances into the design matrix.  This would help to 

ameliorate the low power stemming from the limited number of different relationships 

informative for estimating sex-linked variance in a paternal half-sib design, although mostly for 

the female estimates (see Appendix B4).  Male estimates are little improved by the addition of 

mean male offspring on sire covariance estimates because the number of these relationships (e.g., 

60 in our study) is typically much lower than the number of mean female offspring on dam pairs 

(e.g., 600 in our study) in a paternal half-sib design (Appendix B4).

Our results indicate that ignoring sex-linked additive genetic (co)variances may affect 

predictions of evolutionary responses to selection or conclusions regarding the effects of 

evolutionary forces on additive genetic variation.  The impacts of ignoring sex-linked 

(co)variances will depend, in part, upon the number of different types of relationships among 

individuals in a study population.  The HS and DFC pedigrees contain very few and many 

different types of relationships, respectively, useful in disentangling the different sources of 

phenotypic variance and thus represent two extremes in a range of possible population structures.  

These extremes highlight a major consequence for applying additive genetic variance estimates to 

inferences regarding evolutionary theory when sex-linked (co)variances have been ignored.

Using additive genetic variance estimates to draw conclusions about evolutionary 

processes necessitates consideration of which estimated component of variance in a statistical 

model contains the additive genetic variance in sex-linked genetic effects when sex-linkage is 

ignored (i.e., a naïve model).  The three generation DFC pedigree contains many different types 

of relationships that enabled the naïve animal model analyses to estimate autosomal additive 
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variance with the least inflation from the sex-linked variance.  When not included in the animal 

model, much of the sex-linked additive genetic variance is contained in the estimates of the 

residual variance.  For pedigrees containing a sufficient variety of relationships, estimates of 

additive variance from naïve models will thus reflect the evolutionary response to selection 

caused mostly by autosomal additive variance and leaving out any sex-linked variance from 

consideration.  Similarly, detailing the changes in additive genetic variance as a consequence of 

selection, mutation, or drift will again mostly reflect changes in the autosomal additive variance.  

However, two caveats deserve further discussion.  

First, estimates of autosomal additive variance were still inflated by sex-linked additive 

variance in the naïve animal models of the DFC pedigree.  Therefore, inferences about 

evolutionary processes drawn from these estimates may be inaccurate with respect to both 

considerations of only autosomal additive variance and to the genome-wide (autosomal + sex-

linked) additive variance.  Secondly, we only modeled simulated traits with simple genetic 

architectures.  It is unclear how naïve models will partition sex-linked additive variance in the 

presence of the additional sources of phenotypic variance often encountered in empirical studies 

(e.g., measurement error, common environment effects, non-additive/indirect genetic effects, 

etc.).  Conversely, estimates of additive genetic variance from the HS design (both naïve 

analytical models) attributed all sex-linked additive variance to autosomal additive variance.  

Therefore, half-sib experiments can still approximate the genome-wide additive variance even 

when excluding sex-linked additive effects from the model.  However, un-modeled sex-linked 

variance will reduce the precision of the additive variance estimates and, in some cases, cause the 

models to attribute too much variance to additive genetic effects (see Appendix B3).  Further, the 

predicted response to selection caused by sex-linked genes is more complex than that of 

autosomal genes (see Griffing 1965; Lande 1980b).  Therefore, even though naïve analyses of HS 
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pedigrees tend to approximate the genome-wide additive variance, it is inappropriate to use this 

quantity to predict evolutionary responses to selection in a breeders’ equation.

In organisms or laboratory systems where only simple pedigree structures are readily 

produced (e.g., half-sib design), the hampered ability to precisely separate autosomal from sex-

linked additive variance will prevent researchers from testing specific predictions regarding the 

genomic location (autosomal vs. sex-linked) of additive genetic variance (sensu Fairbairn and 

Roff 2006).  Pedigree structures similar to the complexity of the DFC design are best suited to 

empirically evaluate these predictions.  Where data from wild populations are used (for example, 

long-term studies of pedigreed populations), an outstanding question is whether or not the animal 

model will have enough statistical power to estimate sex-linked additive genetic variance.  So far, 

we are only aware of three studies that have attempted this in un-manipulated populations 

(humans: Pan et al. 2007; Kosova et al. 2010; passerine birds: Husby et al. 2013).  Although these 

authors do report simple pedigree statistics, they do not include the numbers of first cousins 

(single and double) which Fairbairn and Roff (2006) identified as being particularly useful for 

separating sex-linked additive genetic variance from other sources of phenotypic variance.  

Additionally, no formal analysis quantifying the statistical power to estimate sex-linked additive 

variances in wild population pedigrees has been completed.  Such necessary power analyses can 

follow the ad hoc approaches of Thériault et al. (2007) and DiBattista et al. (2009).  However, a 

comprehensive approach using simulated populations (e.g., Clément et al. 2001; Kruuk and 

Hadfield 2007; Morrissey and Wilson 2010) may prove more useful than any one collection of ad 

hoc case studies.  Until a general power analysis has been completed, the sampling (co)variances 

of the variance estimates are the only means of exploring the influence of confounding sources of 

variation on the sex-linked additive variance estimates.
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Above, our results indicate medium to high levels of sex-linked variance bias estimates of 

sex-specific additive variances and between-sex additive genetic correlations in a manner that 

depends on sex, pedigree design, and method of analysis.  However, to date only a few studies 

have controlled for the difference in covariances between relatives for autosomal versus sex-

linked genes when estimating additive genetic variance (e.g., Chenoweth and Blows 2003; Mezey 

and Houle 2005).  In general, we have too few empirical estimates of sex-linked variance to 

assess the impacts of ignoring the differences between autosomal and sex-linked contributions to 

additive genetic variance.  Above, we show the conditions under which sex-specific estimates of 

genome-wide additive (autosomal+sex-linked) variances are biased.  Bias occurs when sex-linked 

additive variance is large and excluded from the analysis and the study designs are particularly 

powerful for separating autosomal and sex-linked sources of additive genetic variance.  

Conversely, in simple designs such as the HS pedigree, overall bias in genome-wide additive 

genetic variance is lower than in more complex study designs.  However, this is accompanied by 

the inability to uncover the biologically interesting components of additive variance, because HS 

pedigrees are unable to precisely separate autosomal from sex-linked additive variance.  Further, 

our study shows that the potential for bias in estimates of additive genetic (co)variances, 

specifically the between-sex additive genetic correlation, can impact our ability to properly 

address fundamental questions such as the evolution of sexually antagonistic genetic variation.

Alleles with opposing effects in females and males evolve in response to sexually 

antagonistic selection and create a negative between-sex genetic correlation for fitness.  Evidence 

for the overrepresentation of sexually antagonistic genes on the sex chromosomes remains 

equivocal (Curtsinger 1980; Reinhold 1998; Gibson et al. 2002; Parisi et al. 2003; Fitzpatrick 

2004; Bonduriansky 2007; Long and Rice 2007; Mank 2009; Innocenti and Morrow 2010) and 

our results indicate that studies which seek to use between-sex additive genetic correlations as 
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evidence of sexually antagonistic fitness variation (e.g., Chippindale et al. 2001) need to consider 

the potential impact of sex-linked variance on estimates of between-sex correlations.  In cases 

where most of the segregating additive genetic variation in fitness is sexually antagonistic and 

restricted to the sex chromosomes (e.g., Gibson et al. 2002), we expect the sex-linked between-

sex correlation to be less than or equal to zero and autosomal between-sex correlations close to 

unity.  Indeed, Chenoweth et al. (2008) found that autosomal between-sex additive genetic 

correlations in Drosophila serrata tended to be positive and close to unity for the sexually 

dimorphic cuticular hydrocarbons investigated.  However, when the authors combined the sex-

linked between-sex additive genetic correlations (often negative) with the autosomal correlations 

yielded very low genomic between-sex additive genetic correlations.  Our results above 

demonstrate this finding over a range of parameter combinations.  Further, we have shown that 

analyses that model all additive variance as autosomal lead to biased estimates of between-sex 

additive genetic correlations and potential misinterpretation of empirical estimates for the 

identification of sexually antagonistic genetic variation. 
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Table 3.1. Empirical estimates of sex-linked additive genetic variance (X- or Z-linked).  The symbols VS, VA, and VP represent 
empirical estimates of sex-linked additive genetic, autosomal additive genetic, and phenotypic variances, respectively.  These 
studies investigated morphological, behavioral, physiological, and life history traits, but the majority of traits are 
morphological.

Class Organism
Number of 
estimates

VS / VP                       

mean (median)
VS/(VS + VA)        

mean (median) Reference
Insecta

Drosophila melanogaster
4 0.015 (0) 0.094 (0) Sheridan et al. 1968

26 0.135 (0.140) 0.265 (0.260) Cowley et al. 1986
30 0.110 (0.110) 0.202 (0.217) Cowley and Atchley 1988
50 0.069 (0.065) 0.130 (0.108) Mezey and Houle 2005

Bombyx sp.
2 0.219 (0.219) 0.371 (0.371) Zhu and Weir 1996

Aves
Ficedula albicollis

8 0.073 (0.025) 0.156 (0.061) Husby et al. 2012
Taeniopygia guttata

9 0.021 (0) 0.156 (0) Husby et al. 2012
Mammalia

Mus musculus
2 0.108 (0.108) 0.099 (0.099) Zhu and Weir 1996

domestic pig
2 0.001 (0.001) 0.027 (0.027) Wittenburg et al. 2011

Papio hamadryas
16 0.031 (0) 0.044 (0) Willmore et al. 2009

Homo sapiens
6 0.115 (0.085) 0.507 (0.416) Kosova et al. 2010

30 0.121 (0) 0.239 (0) Pan et al. 2007
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Table 3.2. Parameter values used to simulate phenotypes.  Autosomal additive genetic (σ2
a) and 

residual (σ2
e) variances were held constant for both sexes.  Sex-linked additive variance is 

expressed as different proportions of the total phenotypic variance (hs
2) in the homogametic sex.

Homogametic 
sex

Heterogametic 
sex

hs
2

σ2
a σ2

e σ2
s σ2

s

0.0005 50 50 0.05 0.025
0.05 50 50 5.5 2.75
0.11 50 50 12.5 6.25
0.18 50 50 21.5 10.75
0.25 50 50 33.35 16.675
0.33 50 50 50 25
0.43 50 50 75 37.5
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Figure 3.1.  One unit of the double first cousin (DFC) breeding design of Fairbairn and Roff 
(2006).  Eight unrelated individuals of the grandparent generation form four mating pairs (top 
row of male and female symbols).  Each mating pair contributes four full-siblings to the parental 
generation (each vertical rectangle encloses full-sibs of the parental generation sharing the same 
numerical label: “1”, “2”, “3”, or “4”).  From the parental generation, every individual in a full-
sib family is assigned to a different “mating group” (lowercase letters) and is mated to an 
individual from one of the three other full-sib families in their mating group (different rectangles 
within the same mating group letter), as in a half-sib breeding design.  Each mating between 
parental generation individuals creates eight offspring in the F1 generation (four female and four 
male; not depicted).  Individuals in the F1 generation are full- and half-sibs within a “mating 
group”.  Relationships between F1 offspring from different mating groups are first and double 
first cousins.
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Figure 3.2.  Analyses implementing “informed” observed variance components models (circles) 
of half-sib pedigrees (A-C) or animal models (boxes) of half-sib pedigrees (D-F) and DFC 
pedigrees (G-I).  The sex-linked between-sex additive genetic correlation is approximately 0.71 
(first column, maximum parameter value), 0 (second column), or -0.71 (third column, minimum 
parameter value).  Each panel depicts the average percent bias in autosomal additive variance 
estimates in the homogametic sex (open symbols) and the heterogametic sex (closed symbols) as 
a function of the proportion of phenotypic variance comprised of sex-linked variance (hs

2) and 
when the sex-linked between-sex additive genetic correlation is approximately 0.71 (first column, 
maximum possible parameter value), 0 (second column), and -0.71 (third column, minimum 
possible parameter value).  In all panels, bars indicate the extent of the 95% quantile of estimates.  
Note in panels A-C, the 95% quantiles are symmetrical and lower limits of the homogametic sex 
have been cut off to preserve space; also in panels E and F the upper limit of the 95% quantiles 
for the homogametic sex extend above the plotting region for the largest hs

2.
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Figure 3.3. Analyses implementing “informed” observed variance components models (circles) 
of half-sib pedigrees (A-C) or animal models (boxes) of half-sib pedigrees (D-F) and the DFC 
pedigrees (G-I).  Each panel depicts the genomic (autosomal+sex-linked) between-sex additive 
genetic correlation (rg-hom,het) when the sex-linked between-sex additive genetic correlation is 
approximately 0.71 (first column, maximum possible parameter value), 0 (second column), and -
0.71 (third column, minimum possible parameter value) (note that from equation (9), estimates of 
rg-hom,het are a function of all the genetic (co)variance parameters).  The horizontal black line 
indicates the simulated autosomal between-sex additive genetic correlation of one and the 
diagonal grey line indicates the expected genomic between-sex additive genetic correlation.  In all 
panels, bars indicate the extent of the 95% quantile of estimates.
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Figure 3.4.  Analyses implementing “naïve” observed variance components models of half-sib 
pedigrees (A-C); circles or animal models (boxes) of half-sib pedigrees (D-F) and the DFC 
pedigrees (G-I); the sex-linked between-sex additive genetic correlation is approximately 0.71 
(first column, maximum possible parameter value), 0 (second column), and -0.71 (third column, 
minimum possible parameter value).  Each panel depicts the average percent bias in autosomal 
additive variance estimates as a function of the proportion of phenotypic variance comprised of 
sex-linked variance (hs

2).  Panel arrangement, symbols, and lines as in figure 3.2.  Note that the 
point for the most extreme value of the sex-linked variance (hs

2) in panel D lies above the plotted 
region to conserve space (only the arrow depicting the extent of the lower confidence limit is 
visible).
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Figure 3.5. Analyses implementing “naïve” observed variance components models (circles) of 
half-sib pedigrees (A-C) or animal models (boxes) of half-sib pedigrees (D-F) and the DFC 
pedigrees (G-I).  Each panel depicts the autosomal between-sex additive genetic correlation (ra-

hom,het). Panel arrangement, symbols, and lines as in figure 3.3.
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CHAPTER 4

Sex chromosomal additive genetic (co)variation under alternative models of dosage 

compensation: Estimating sex-linked variance when the form of dosage compensation is 

unknown

Abstract

Sex-linked additive genetic variance is predicted to reduce genetic sexual conflict and facilitate 

the evolution of sexual dimorphisms.  The animal model has allowed quantitative geneticists to 

address a greater number of hypotheses in a wider range of experimental systems and populations 

than previously, but detection of sex-linked variance remains problematic.  The current method to 

disentangle autosomal and sex-linked sources of additive genetic variance in animal models 

makes the untenable assumption of no global sex chromosomal dosage compensation.  Here, we 

develop a genetic model of sex-linked genetic effects and derive general expressions to calculate 

the sex-linked genotypic covariances between pairs of individuals under all known mechanisms 

of global sex chromosomal dosage compensation.  We then use these expressions to construct 

sex-linked relatedness matrices for subsequent use in animal models and demonstrate how to 

parameterize algorithms to directly obtain the inverse of sex-linked relatedness matrices.  We 

address the differences among estimates of sex-linked variance when different assumptions about 

dosage compensation are made and discuss the process of estimating sex-linked additive 

(co)variances when the status of dosage compensation is unknown for a particular study 

organism.  Finally, we discuss how to use the animal model to estimate sex-specific sex-linked 

additive genetic variance and between-sex genetic correlations affected by sex-biased gene 

expression.
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Introduction

As a consequence of divergent reproductive roles between the sexes, female and male organisms 

have different optimal phenotypes which we recognize as dimorphisms in primary and secondary 

sexual traits (Darwin 1874; Fairbairn et al. 2007; Fairbairn 2013).  The differences between sexes 

are presumed to reflect sex-specific evolutionary responses toward different fitness optima 

(Hedrick and Temeles 1989; Fairbairn et al. 2007).  However, correlations between the sexes in 

the expression of shared alleles constrain the evolution of sexual dimorphism (Lande 1980; Reeve 

and Fairbairn 2001), creating genetic conflict between the sexes (Parker 1979; Arnqvist and 

Rowe 2005; Bonduriansky and Chenoweth 2009).  Thus, evolutionary biologists are faced with 

explaining how sexual dimorphisms evolve in the face of genetic constraint resulting from the 

sexes sharing the same genome (Lande 1980, 1987; Reeve and Fairbairn 1996, 1999, 2001; 

Fairbairn 1997; Badyaev 2002; Fairbairn and Roff 2006).    

Evolutionary theory predicts that genes with sex-specific fitness effects will accumulate 

on or be linked to the sex chromosomes in organisms with chromosomal sex determination (i.e., 

sex-linkage; Fisher 1931; Charlesworth and Charlesworth 1980; Rice 1984; Charlesworth et al. 

1987, but see Fry 2010).  However, few theoretical models that predict sex-linkage of sexually 

antagonistic variation consider mechanisms of global sex chromosome dosage compensation.  We 

follow Muller et al. (1931) and Lucchesi (1978) to operationally define dosage compensation as 

epigenetic effects that tend to equalize the sex-linked gene expression between the homogametic 

and heterogametic sex (note this differs from Mank et al. 2011).  Global sex chromosomal dosage 

compensation mechanisms alter the expression level of an entire sex chromosome and can be 

grouped into the following four classes according to the sex in which the mechanism operates and 

its effect on the expression levels of the sex chromosomes (Table 4.1): (i) doubling of expression 

on the single shared sex chromosome in the heterogametic sex (HEDO), (ii) random, with respect 
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to parent of origin, inactivation of one sex chromosome in the homogametic sex (HORI), (iii) 

halved expression levels for each sex chromosome in the homogametic sex (HOHA), and (iv) 

inactivation of the paternal sex chromosome in the homogametic sex (HOPI).  Depending on the 

specific form of dosage compensation, selection is predicted to either favor or disfavor sex-

linkage of sexually antagonistic alleles (Charlesworth et al. 1987; Rogers et al. 2003; Carrel and 

Willard 2005; Fairbairn and Roff 2006; Turner 2006; Mank et al. 2010).  

In part, the predicted accumulation of sex-linked sexually antagonistic alleles differs 

among forms of dosage compensation because of the way dosage compensation affects the 

distribution of sex-linked genetic effects. When global dosage compensation occurs, each 

mechanism equalizes the average phenotypic effects of sex-linked allele(s) in one sex as 

compared to the other sex.  However, the forms of dosage compensation differentially affect the 

variance in sex-linked allelic effects.  In the simple case where no mechanism of global dosage 

compensation (NGDC) occurs, the variance in sex-linked additive genetic effects in the 

homogametic sex is expected to be twice that in the heterogametic sex (James 1973; Bulmer 

1980; Lynch and Walsh 1998; Kent et al. 2005).  However, the HEDO, HORI, and HOHA forms 

of dosage compensation cause the variance in sex-linked additive genetic effects in the 

heterogametic sex to be twice that in the homogametic sex (the opposite to NGDC; James 1973; 

Bulmer 1980; Lynch and Walsh 1998; Kent et al. 2005) and the HOPI pattern of dosage 

compensation causes the variance in sex-linked effects to be equal between the two sexes 

(Bulmer 1980; Lynch and Walsh 1998).  Consequently, different forms of dosage compensation 

have different expectations for the covariance in sex-linked additive genetic effects among 

relatives in a population.  This presents a major obstacle for empiricists seeking to quantify the 

contribution of sex-linked genetic variation to evolutionary responses in non-model organisms.  

Further, if the presence or form of dosage compensation is unknown, but the expected variance in 
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sex-linked genetic effects depends on the form of dosage compensation, can we still obtain 

accurate estimates of sex-linked additive genetic variance in a study population?  

To obtain a comprehensive picture of the prevalence and quantities of additive genetic 

variance located on the sex chromosomes, particularly when dosage compensation occurs, 

necessitates the development of a statistical method flexible enough to accommodate the 

estimation of sex-linked variance under all forms of dosage compensation.  To date the mixed 

effect statistical model, known as the ‘animal model’ (Henderson 1973) in livestock breeding 

programs, represents the best modeling approach to estimate sex-linked additive variances by its 

incorporation of the sex-linked  additive genetic relatedness matrix inverse (S-1; e.g., Fernando 

and Grossman 1990).  However, the previous theory used to directly construct S-1 (based on a 

single locus genetic model) assumes the absence of global sex chromosomal dosage 

compensation (Fernando and Grossman 1990).  When dosage compensation mechanisms do 

occur, they alter the expected covariances between relatives in sex-linked allelic effects for one or 

the other sex (James 1973; Bulmer 1980; Lynch and Walsh 1998; Kent et al. 2005).  

Consequently, this affects the sex-linked relatedness matrix used in an animal model (S-1), 

depending on which form of dosage compensation underlies sex-linked gene expression in an 

organism. 

Further, because genetic models for the construction of the sex-linked relatedness matrix 

inverses under various forms of dosage compensation are not available, we do not know how our 

estimates will be affected by using the wrong form of the sex-linked relationship matrix in 

organisms for which we do not know the presence or type of sex chromosomal dosage 

compensation (e.g., all organisms not in Table 4.1).  Fernando and Grossman (1990) comment 

that instead of using animal models to estimate sex-linked variances given the data and assuming 

a certain form of dosage compensation (or none at all), instead animal models and likelihood 
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based model comparison techniques could potentially be used to determine which form of dosage 

compensation best fits the data.  However, currently no methods exist for the direct creation of 

the sex-linked relatedness matrix inverse for any form of dosage compensation and thus this 

conjecture has yet to be tested.    

In this paper, we create a general framework to describe the quantitative genetic 

properties of sex-linked additive variance under different mechanisms of global sex chromosome 

dosage compensation.  We begin by deriving expectations of the population genotypic mean and 

variance at a single sex-linked locus for each form of dosage compensation in table 4.1.  From 

these expectations we formulate expressions in terms of coefficients of dosage compensation to 

describe the expected covariance between relatives due to sex-linked additive genetic effects.  

Next, we develop the necessary formulae to apply rules that allow us to directly construct the 

inverse of the sex-linked relatedness matrix, under all forms of dosage compensation, for use in 

animal models.  We then test Fernando and Grossman’s (1990) conjecture that likelihood based 

model comparisons could be used to test for the presence and form of dosage compensation 

underlying sex-linked additive variances contributing to the phenotypic variance.  Results from 

these tests are then used to help inform empiricists on how to proceed with an animal model 

analysis even when the presence or specific form of dosage compensation is not known for their 

particular study organism.  

Genetic model

First, we create a genetic model with a single variable to describe the effect of dosage 

compensation on the genotypic mean and variance of both sexes.  Previously, single locus models 

of sex-linked loci have been constructed (e.g., James 1973; Fernando and Grossman 1990; Kent 

et al. 2005).  However, these models are too specific and can only describe one or two forms of 
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dosage compensation at a time.  Our model enables us to use one framework that is later used to 

formulate the covariance between relatives due to sex-linked genetic effects under all forms of 

sex chromosomal dosage compensation in table 4.1.  For simplicity, we assume the population is 

in gametic equilibrium, sex-linked non-additive effects do not affect the trait of interest, and 

recombination does not occur between the X and Y or Z and W during meiosis (such as observed 

in the pseudoautosomal regions of sex chromosomes in some organisms; Otto et al. 2011).  We 

also begin with an assumption that the genotypic value of a sex-linked additive allele is equal in 

the two sexes (i.e., no locus-specific, sex-biased gene expression, but this condition is relaxed 

later).   

Population genotypic mean and variance

Assume a sex-linked locus in the homogametic sex has alleles A1 and A2, where the genotypic 

value for the A1 homozygote is +a and the genotypic value for the A2 homozygote is -a.  In the 

heterogametic sex, the genotypic value for the A1 genotype is +0.5a and for the A2 genotype it is 

–0.5a.  Let p represent the frequency of A1 alleles and λi represent the average expression level of 

an allele inherited from the homogametic sex parent (λp-hom) or heterogametic sex parent (λp-het).  

The quantity λi is determined for each allele at a locus as the product of the probability of 

expression times the relative level of expression, with the normal expression level of an allele 

equaling one.  The genotypic values and frequencies of the possible genotypes are shown in table 

4.2.  For non-inbred individuals, the mean genotypic values in a population for the homogametic 

(g̅hom) and heterogametic (g̅het) sex are:

g ̅hom =0.5a(λp-hom+λp-het)p
2 + 0.5a(λp-hom–λp-het)pq + 0.5a(-λp-hom+λp-het)pq

– 0.5a(λp-hom+λp-het)q
2 (1)
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g ̅het =0.5aλp-homp – 0.5aλp-homq (2)

and the genotypic variances for the homogametic and heterogametic sex are:

V(ghom)=p2[0.5a(λp-hom+λp-het)-g̅hom]2 + pq[0.5a(λp-hom–λp-het)-g ̅hom]2

+ pq[0.5a(-λp-hom+λp-het)-g ̅hom]2 + q2[-0.5a(λp-hom+λp-het)-g ̅hom]2 (3)

V(ghet)=p[0.5aλp-hom- g ̅het]
2+q[-0.5aλp-hom- g ̅het]

2 (4)

Equations 1-4 simplify to the general expressions shown in table 4.3.  

Substitution of λi values specific to each mechanism of dosage compensation into the 

general expressions of the population-wide genotypic mean and variance yields the mean and 

variance for each form of dosage compensation in table 4.3.  Here, we assume an allele has the 

same effect in one sex as the other to facilitate between-sex comparisons of the genotypic means 

and variances (condition relaxed below; see Discussion).  When global dosage compensation 

does not occur (NGDC: λp-hom=λp-het=1), the expected genotypic mean and variance in the 

homogametic sex [a(p-q) and 2pqa2] equal the expectations for an autosomal locus with no 

dominance (p. 129, eqn. 8.5 Falconer 1989).  When the gene at a sex-linked locus in the 

heterogametic sex is up-regulated to twice the expression level of the gene dose (HEDO) the 

value λp-hom=2.  For random inactivation of one whole sex chromosome in the homogametic sex 

(HORI) and halved expression on each sex chromosome in the homogametic sex (HOHA), 

average allele expression levels for the two sex chromosomes equal one-half (λp-hom=λp-het=0.5). 

Note that for the HORI and HOHA mechanisms, λp-hom=λp-het=0.5 for different reasons.  For 
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HORI, the probability of expression in the population for an allele at a given sex-linked locus 

equals one half for both alleles and the relative expression level of each allele is one.  However, 

for HOHA, the probability of expression equals one for each allele at a sex-linked locus, but the 

relative expression level of each allele equals one-half.  Finally, if the paternal sex chromosome is 

always inactivated in the homogametic sex, the average expression levels of the two sex-linked 

alleles are λp-hom=1 and λp-het=0.  

For polygenic traits, the sex-linked additive genetic variance for non-inbred individuals 

of the homogametic sex (σ2
S-hom) and for the heterogametic sex (σ2

S-het) is obtained by summation 

over all sex-linked loci (assuming no linkage disequilibrium or epistasis; Falconer 1989).  For 

convenience (e.g., Bulmer 1980; Kent et al. 2005), the sex-linked variance in the heterogametic 

sex is expressed as a linear function of the sex-linked variance in the homogametic sex (e.g., last 

row of table 4.3).  When global dosage compensation does not occur (NGDC) the sex-linked 

additive genetic variance in the homogametic sex is twice the sex-linked variance in the 

heterogametic sex.  However, under the HEDO, HORI, and HOHA forms of dosage 

compensation, the sex-linked additive genetic variance in the homogametic sex remains the same, 

but the sex-linked variance in the heterogametic sex is instead twice that of the homogametic sex.  

In the HOPI model, the sex-linked variances of the two sexes are equal.  

Silencing of one X-chromosome during HORI in human females, or lyonization, may be 

incomplete, whereby around 10% of loci are expressed on both X-chromosomes in some 

individuals (Carrel and Willard 2005; but see Johnston et al. 2008).  We note that our use of λi in 

equations 1-4 can account for such cases of incomplete inactivation.  Recall, the HORI model 

assumes the relative expression level of an allele is always one and across a population the 

average probability of expression equals one-half.  Under the assumption that X-inactivation in 

the HORI mechanism is complete, λp-hom=λp-het=0.5.  However, at the individual loci where X-
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inactivation is absent both the relative expression level and probability of expression equal one 

(λp-hom=λp-het=1).  With incomplete X-inactivation, summing across all sex-linked loci yields the 

population mean and variance in a similar manner as above.  Looking across all sex-linked loci 

contributing to a polygenic trait, the genotypic mean and variance will be a mixture of the means 

and variances for the NGDC and HORI mechanisms (Table 4.3).  For example, assume a trait is 

controlled by 10 sex-linked loci, allelic expression is equal between the sexes, and one locus 

escapes X-inactivation in the female (homogametic sex).  The male (heterogametic sex) mean and 

variance remain unchanged from those developed in the HORI model and the female mean is:
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Consequently, the coefficients for the sex-linked additive genetic variance in the heterogametic 

sex expressed as a function of the sex-linked variance will change (in the example above it would 

change from 2σ2
S-hom to approximately 1.54σ2

S-hom).  This deviation from the expected relationship 

between sex-linked variances in the two sexes can be thought of as a genotype-by-sex interaction 

and modeled as such.    
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Genotypic covariance between pairs of individuals

Here, we use the phenotypic similarity between relatives to quantify the contribution of sex-

linked additive genetic variance to phenotypic variance in a population, using expressions of the 

genotypic covariance between pairs of individuals.  Expressions of genotypic covariances are 

based on the expectations of variance developed above and can be shown to scale up from a 

single locus to an entire genotype additively, as presented above (and see Falconer 1989; Lynch 

and Walsh 1998; Kent et al. 2005).

Derivations of the genotypic covariance between pairs of individuals for the NGDC and 

HORI models of dosage compensation have been covered elsewhere (Bohidar 1964; James 1973; 

Grossman and Eisen 1989; Fernando and Grossman 1990; Kent et al. 2005), so we will only 

summarize the points salient to extending these methods for the HEDO, HOHA, and HOPI 

models of dosage compensation.  Assuming many loci contribute to trait variation in a 

population, the contribution of sex-linked additive genetic variation to the phenotypic 

resemblance between individuals i and j is expressed by the equation:

C(gi, gj) = Ii,j × ψi,j × Li × Lj × σ2
S-hom (7)

(Kent et al. 2005).  Here the genotypic covariance C(gi, gj) is a function of the relatedness 

between the two individuals (Ii,j × ψi,j) multiplied by the contribution of allelic effects in each 

individual relative to the sex-linked variance (Li × Lj) and the homogametic sex-linked variance 

(σ2
S-hom). The terms Li and Lj are coefficients of dosage compensation (named lyonization 

coefficients in mammals; Kent et al. 2005) which scale the allelic contributions to phenotypic 

similarity in terms of sex-linked variance in the homogametic sex.  This allows the effect of an 

allele in one sex to be compared to the effect of that same allele if it were to be expressed in the 
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other sex.  Ii,j accounts for the different number of sex chromosomes in the homogametic sex 

compared to the heterogametic sex (two vs. one, respectively) when calculating the relatedness.  

ψi,j is the kinship coefficient, or probability of sharing one (P1) and two (P2) alleles identical-by-

descent (IBD; see p.43, table 3.6 Bulmer 1980 for examples in common relationships for sex-

linked loci).  The quantities Ii,j and ψi,j are invariant with respect to both the probability of an 

allele being expressed at a locus and the level of expression of that allele due to dosage 

compensation.  Therefore, Ii,j and ψi,j are the same for all models of dosage compensation (Table 

4.4).  This implies that the portion of phenotypic resemblance between two individuals 

attributable to the sex-linked additive genotypic covariance varies among the mechanisms of 

dosage compensation by the differences in the product Li × Lj.  When the sex-linked additive 

genetic variance is expressed in terms of the sex-linked variance in the homogametic sex, the 

genotypic covariance between two relatives of the homogametic sex remains the same in all 

models.    

Equation 7 can be written in matrix notation, to encompass all pairs of individuals in a 

population at once, as Sσ2
S-hom (where upper-case letters in bold-faced type represent a matrix.  In 

S, each element si,j is the genotypic covariance between individuals in the ith row and the jth 

column [C(gi, gj)].

Mixed model for the prediction of genetic effects

Mixed effect statistical models can be used to partition phenotypic variation in a population into 

genetic and environmental sources of variation.  The variance partitioning approach assumes that 

random effects (e.g., autosomal and sex-linked additive genetic effects) describe individual 

deviations from the population mean caused by different sources of variation (Lynch and Walsh 

1998).  Mixed effect models can be used to estimate autosomal and sex-linked additive genetic 
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sources of variance from expressions of covariances among individuals.  Using matrices 

containing all pairwise genotypic covariances between individuals sharing sex-linked alleles, 

developed above, we can obtain estimates of sex-linked additive genetic variance under any form 

of dosage compensation.  Consequently, we can use these mixed effect models to test Fernando 

and Grossman’s (1990) conjecture that the presence and form of dosage compensation can be 

assessed using likelihood based comparisons between mixed effect statistical models that each 

describe sex-linked additive genetic variation under a different form of dosage compensation.  

A simple description of an individual’s phenotype for a polygenic trait, yi, is:

yi = μ + αA-i + αS-i + ei (8)

Here, μ is the phenotypic mean in a population, αA-i is the phenotypic deviation caused by the 

autosomal additive genotype of individual i (autosomal breeding value), αS-i is the phenotypic 

deviation caused by the sex-linked additive genotype of individual i (sex-linked breeding value), 

and ei represents the phenotypic deviation caused by residual effects experienced by individual i

(e.g., non-additive genetic or environmental sources of variation).  For a population with both 

phenotypic measures and information indicating every individual’s parents (a pedigree), 

statistical predictions for the autosomal breeding values, sex-linked breeding values, and 

environmental deviations are obtained using a linear mixed effects model known as the animal 

model (Henderson 1973; Lynch and Walsh 1998).  A univariate animal model, for a trait with 

phenotypic values determined as in equation 8, takes on the matrix form:

y = Xμ + ZAαA + ZSαS + e (9)
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In the simple case where all n individuals in a population are measured once for phenotype y, then 

equation 9 describes the nx1 vector of phenotypes, y, as a function of the population mean μ, plus 

the nx1 vector of autosomal breeding values for each individual in αA (where lower-case 

characters in bold-faced type indicate vectors), plus the nx1 vector of sex-linked breeding values 

for each individual in αS, and the nx1 vector of residual deviations in vector e.  The matrices X,

ZA, and ZS are nx1, nxn, and nxn incidence matrices relating the fixed and random effects to each 

observation in y.  The random effects (αA, αS, and e) are assumed to follow independent Gaussian 

distributions.  These are expressed as functions of the mean and variance of the distributions by: 

αA ~N(0, Aσ2
A),  αS ~N(0, Sσ2

S-hom), and e~N(0, Iσ2
E).  Here, I is an identity matrix (nxn with 1s 

along the diagonal) reflecting the assumption that the residual deviations are uncorrelated among 

individuals.

Estimates of variance components in an animal model (σ̂ 2
A, σ ̂̂ 2S-hom, and σ ̂ 2E) are 

obtained from the mixed model equations:
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(Henderson 1973; Fernando and Grossman 1990).  As can be seen in equation (10), solving this 

system of linear equations requires the inverses of the autosomal and sex-linked additive genetic 

covariance matrices (A-1 and S-1).  Algorithms have been developed for constructing A-1 directly, 

bypassing the computationally intensive process of preliminary construction of A followed by 
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matrix inversion (e.g., Henderson 1976; Meuwissen & Luo 1992).  Fernando and Grossman 

(1990) developed an algorithm to directly construct S-1, assuming no global dosage compensation 

mechanism (NGDC).  However, no algorithms have been adapted for the direct construction of S-

1 under any model of dosage compensation.  

  

Direct computation of S-1 with dosage compensation

The sex-linked additive genetic value for individual i (αS-i) can be described by a linear equation 

which includes the contributions of the parental sex-linked breeding values to an individual plus a 

deviation caused by Mendelian sampling of parental genotypes during gametogenesis (Fernando 

and Grossman 1990). Table 4.5 presents these equations for both sexes under the four forms of 

dosage compensation and the case without dosage compensation.  Considering all individuals in a 

population at once, a vector of sex-linked breeding values is predicted by:

αS = PαS-p + ε (11)

(Quaas 1988; Fernando and Grossman 1990).  In equation 11 the matrix P relates progeny to 

parents, αS-p is the vector of parental sex-linked breeding values, and ε is the vector of deviations 

caused by Mendelian sampling.  The non-zero elements in row i of P, for individual i, are either 1 

or 0.5 in the columns representing the dam or sire of individual i.  Whether the element in P for a 

parent of i is 1 or 0.5 depends on the specific form of dosage compensation and which parent is 

the homogametic sex.  The elements of P under all models of dosage compensation are shown in 

table 4.5 as the coefficients of the parental sex-linked breeding values.  If both parents are 

unknown for an individual, all elements of P are zero in the row corresponding to that individual 

(except the diagonal which is always one).  For example, under the NGDC model, an individual 
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of the homogametic sex will have an entry of 0.5 in the column corresponding to its homogametic 

parent and a one in the column corresponding to its heterogametic parent.  For an individual of 

the heterogametic sex, it will only have a 0.5 in the column corresponding to its homogametic 

parent.

From equation 11, the covariance matrix of αS (or sex-linked relatedness matrix S) is 

obtained by taking the variance of both sides of equation 9:

V(αS) = Sσ2
S-hom = (I - P)-1 V (I – P`)-1 σ2

S-hom (12)

(Quaas 1988; Fernando and Grossman 1990).  Here, P` denotes the matrix transpose of P and (I –

P)-1 represents a matrix that contains each individual’s expected contribution of sex-linked genes 

from all of its ancestors.  The matrix V is the covariance in Mendelian sampling deviations (ε) for 

all members of the population.  However, all off-diagonal elements (covariance between 

individuals in their Mendelian sampling deviations) can be shown to equal zero (Fernando and 

Grossman 1990).  The diagonal elements of V are the Mendelian sampling variances for each 

individual, which are functions of the inbreeding coefficients at a sex-linked locus.

Taking the inverse of both sides to equation 12 yields the inverse of the sex-linked 

relationship matrix:

S-1 = (I - P) V-1 (I – P`), (13)

which can be constructed according to simple rules (Henderson 1976; Fernando and Grossman 

1990).  The algorithm specific to the NGDC model is presented in Fernando and Grossman 

(1990).  Construction of P under alternative models of dosage compensation is a straightforward 
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matter of substituting 0s, 0.5s, and 1s depending on the specific form of dosage compensation 

(Table 4.5).  However, completion of the right hand side of equation 13 requires the variance in 

Mendelian sampling deviations to be calculated specifically for each model of dosage 

compensation.  

Computation of the diagonal elements of V

Fernando and Grossman (1990) specify the values along the diagonal of the Mendelian sampling 

variance matrix (V) for a model with no global dosage compensation (NGDC).  Here, we derive 

the values for the four dosage compensation models considered above.  The work below closely 

follows the derivation for the autosomal case presented by Mrode (pp27-28 ch. 2.2, 2005) and 

Quaas (1988).  Therefore, after setting up a general equation that applies to sex-chromosomal 

variation under any form of dosage compensation, we only list the final expressions for each case 

(Table 4.6).  Finally, note that V is constructed below, whereas V-1 is the necessary quantity for 

the direct construction of S-1.  However, element i along the diagonal of V-1 is simply the 

reciprocal of element i along the diagonal of V (vi
-1 = 1/vi).

For an individual i, with both the homogametic parent hom and heterogametic parent het

known in the population, a general formula for the ith diagonal element of V is: 

vi,i=(Ii,i×ψi,i×Li
2)–Pi,hom

2×(Ihom,hom×ψhom,hom×Lhom
2)–Pi,het

2×(Ihet,het×ψhet,het×Lhet
2)

– 2×Pi.hom×Pi,het×(Ihom,het×ψhom,het×Lhom×Lhet) (14)

Here, Li is the coefficient of dosage compensation appropriate to the sex of i, Pi,hom and Pi,het are 

the elements in the ith row and either hom or het column of the matrix P (or the coefficient of the 

appropriate parent from table 4.5), and Li, Lhom, and Lhet are the coefficients of dosage 
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compensation for individual i, the homogametic parent, and heterogametic parent, respectively.  

The first term in equation 14 is the variance for the sex-linked breeding value of individual i.  The 

second and third terms in equation 14 represent the variances of the homogametic and 

heterogametic parents’ sex-linked breeding values, respectively, each multiplied by the square of 

the corresponding coefficient from the P-matrix.  The final term is 2Pi,homPi,het times the 

covariance in sex-linked breeding values between the homogametic and heterogametic parents of 

individual i.  Equation 14 is derived from re-arranging equation 11 to express the Mendelian 

sampling deviation of individual i as the difference between the sex-linked breeding value for 

individual i and its parent’s average sex-linked breeding value and subsequently taking the 

variance of both sides.  Note the heterogametic sex parent does not contribute a shared sex 

chromosome (X or Z) to offspring of the heterogametic sex.  Therefore, the third and fourth terms 

of equation 14 drop out of the equation for heterogametic sex individuals.  

For an individual i of the homogametic sex, if the homogametic parent is unknown, but 

the heterogametic parent is known, then the third and fourth terms drop out of equation 14 to 

yield:

vi,i=(Ii,i×ψi,i×Li
2) – Pi,hom

2×(Ihom,hom×ψhom,hom×Lhom
2) (15)

Whereas, if the heterogametic parent is unknown, but the homogametic parent is known, then the 

second and fourth terms of equation 14 drop out and the diagonal element of V is:

vi,i=(Ii,i×ψi,i×Li
2) – Pi,het

2×(Ihet,het×ψhet,het×Lhet
2) (16)
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If both parents are unknown, vi,i=(Ii,i×ψi,i×Li
2).  For individual i of the heterogametic sex, if the 

homogametic parent is not known, vi,i=(Ii,i×ψi,i×Li
2).  Substitution of I, L, ψ, and P from a given 

model of dosage compensation into the above equations gives the specific values in table 4.6.  

Note the HEDO, HORI, and HOHA forms of dosage compensation have equivalent values in 

tables 4.4 and 4.5 and therefore produce the same values for the expected Mendelian sampling 

variance (Table 4.6).

The algorithm for the direct construction of S-1 under the various models of dosage 

compensation is coded in the R language for statistical computing (R Development Core team, 

2012) and is freely available in the R package nadiv (v2.12, Wolak 2012) or by contacting the 

first author.  Output from the nadiv function makeS can be used in conjunction with animal 

model software, such as MCMCglmm (Hadfield, 2010), ASReml (Gilmour et al. 2009; Butler 

2009), or WOMBAT (Meyer 2007; for specific details about interfacing nadiv output with these 

animal model software programs, see Wolak 2012) to estimate sex-linked additive genetic 

(co)variances.

What to do if the mechanism of global dosage compensation is unknown?

Choosing the appropriate model of sex chromosome dosage compensation to include in an animal 

model is a problem for most empirical systems.  The presence or specific type of global dosage 

compensation is only known in a few organisms (Table 4.1).  Some general patterns do emerge 

which can be used to guide the empiricist (e.g., birds and lepidopterans seem not to have a global 

sex chromosome dosage compensation mechanism).  However, evidence regarding the 

mechanism of dosage compensation is very spotty both across major taxa (reptiles are noticeably 

absent) as well as within taxa (only one species of beetle!).  Further, different mechanisms of 

dosage compensation have been found in related species within taxa (e.g., within orthopterans 
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Acheta domesticus shows evidence of HEDO whereas results from Gryllotalpa fossor suggest a 

HORI mechanism).  Therefore, it is unreliable to use related taxa as an informative guide.

Despite this, comparisons among the sex-linked relatedness matrices that arose from our 

model above suggest minor consequences for using a biologically incorrect model of dosage 

compensation in an animal model analysis.  This somewhat non-intuitive result can be understood 

by comparing the different sex-linked relatedness matrices as they affect the distribution of sex-

linked breeding values in a population.  Above we noted that, for a specific population, the sex-

linked breeding values for a single trait follow an approximately Gaussian distribution with a 

mean of zero and (co)variance of Sσ2
S-hom.  Differences between sex-linked relationship matrices 

under the various models of dosage compensation only differ from one another at elements 

representing heterogametic-heterogametic pairs or opposite sex pairs (entries for the 

homogametic-homogametic sex pairs are consistent from mechanism to mechanism; see Table 

4.4).  The covariance between relatives from a relationship involving an individual of the 

heterogametic sex will only differ from one model of dosage compensation to the other by the 

coefficients of dosage compensation.  Therefore, the relationship matrices (and similarly for the 

inverse of the relationship matrix used in the animal model) are interchangeable between models 

of dosage compensation in the sense that element-wise multiplication (i.e., a Hadamard product) 

of a relationship matrix by a matrix of constants (representing the difference in the coefficients of 

dosage compensation) will translate between relationship matrices for the different models of 

dosage compensation.

We illustrate this with a simple example of a full-sib family where the pedigree is ordered 

sire, dam, son, and daughter.  For simplicity, we compare only the NGDC and HORI matrices 

and specify males as the heterogametic sex.  Assuming a sex-linked additive genetic variance 

(σ2
S-hom) of 50, the distribution of sex-linked breeding are:
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(For simplicity, we show only elements on or below the diagonal).  From these matrices, the 

above relationships between sex-linked variances in the two sexes can be seen.  For NGDC, the 

sex-linked variance for non-inbred males (heterogametic sex) is one half (diagonal elements equal 

to 25) that of non-inbred females (homogametic sex; diagonal elements equal to 50).  However, 

in the HORI model, male sex-linked variance is twice that (100) of the female variance (50).  

Also note the covariance between males and females is one-half the sex-linked variance in the 

NGDC model (e.g., sire-daughter covariance=25), whereas it equals the sex-linked variance in the 

HORI model (e.g., sire-daughter covariance=50).  These results are the simple application of 

different coefficients of dosage compensation in table 4.4.  The combined effect is that the SHORI

matrix is the element-wise product of the SNGDC matrix with a scalar matrix, whose elements are 

the element-by-element ratio of HORI coefficients of dosage compensation to NGDC coefficients 

of dosage compensation:
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Here the # symbol denotes the element-wise (or Hadamard) product of two matrices.  The 

opposite calculation involves using a matrix with the reciprocal values of Sscalar.

Because the sex-linked relatedness matrices under different forms of dosage 

compensation (and for the purposes of solving the mixed model equations, the inverses of these 

matrices) only differ from one another by a scalar amount, in an ideal experiment animal models 

which use any of the dosage compensation relatedness matrices will produce equal maximum log 

likelihoods upon convergence.  This occurs because the difference between relationship matrices, 

or more basically the distribution of sex-linked breeding values in a population, is a constant 

amount from one form of dosage compensation to another (or to NGDC).  This constant amount 

does not affect the calculations concerned with maximizing the log-likelihood of the models.  

Therefore, Fernando and Grossman’s (1990) conjecture is not supported since likelihood ratio 

tests between animal models cannot be used to determine the form of dosage compensation 

underlying the phenotypic distribution of a trait.  

Discussion

Above, we derive a general model to express the genotypic covariance between relatives under all 

possible alternative mechanisms of global sex chromosomal dosage compensation.  We also 

extended the algorithms used to construct sex-linked relatedness matrices for use in the animal 

model to include these alternative models of dosage compensation and supply R code for this in 

the nadiv package.  Thus, we have developed both the theory and the tools necessary to 

estimate sex-linked additive genetic variance from pedigrees under any of the known forms of 

global sex chromosome dosage compensation.  Unfortunately, the animal model cannot be used 

to detect one form of dosage compensation over another as originally suggested (Fernando and 

Grossman 1990).  However, since the differences between the alternative forms of dosage 
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compensation only serve to scale the sex-linked variance by a multiple of two, empiricists can 

estimate the variance in sex-linked breeding values without bias even when the underlying 

mechanism of global sex chromosome dosage compensation is unknown.  

Above (Table 4.3), we assumed that an allele has the same genotypic value in both sexes 

and show that under NGDC the mean genotypic value of the homogametic sex is expected to be 

twice the mean in the heterogametic sex.  However, in any of the above models there exist no a 

priori reasons to expect alleles at a sex-linked locus to have equal effects in the sexes.  When 

alleles have sex-specific effects (i.e., genotypic values afemale≠amale) the relationship between the 

sex-linked variances in the homogametic and heterogametic sexes will deviate from those 

amounts described above (Table 4.3).   The effect of an allele in the heterogametic sex can be 

expressed as a function of the effect of the same allele in the homogametic sex times the between-

sex covariance in allelic effects.  The between-sex covariance in sex-linked effects can be 

expressed in terms of the genotypic sex-linked variance.  Thus, we can easily extend the above 

formulas to incorporate sex-bias in gene expression into estimates of sex-linked additive 

(co)variances using the animal model.  

Dealing with genotype-by-sex interactions on the sex chromosomes in animal models 

uses the same approach to the way in which animal models handle genotype-by-sex interactions 

on the autosomes.  A single trait can instead be thought of as two traits (the trait as expressed in 

the homogametic sex and the trait as expressed in the heterogametic sex) and estimates of the sex-

linked breeding values for a trait in the homogametic sex can be estimated for individuals of the 

heterogametic sex and vice versa.  The result is that one individual has two breeding values for a 

given phenotype; one value expressing the additive effect of its genotype (i.e., breeding value) 

when the genotype is expressed in the homogametic sex and another value expressing the 

breeding value when the individual’s genotype is expressed in the heterogametic sex.  The 
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covariance between the two breeding values across the entire population is the sex-linked 

between-sex additive genetic covariance.

In an animal model, this is analogous to fitting a bivariate model where trait one is the 

phenotype of interest measured on females and trait two is the phenotype of interest measured on 

males (Mrode 2005).  The sex-specific sex-linked variances and between-sex covariance 

estimates from an animal model, all expressed as functions of the homogametic sex, can be 

transformed to reflect the actual variance in sex-linked breeding values for the heterogametic sex 

trait (i.e., divide the variance estimate in the heterogametic sex by two for NGDC or multiply by 

two for HEDO/HORI/HOHA) or the covariance between the two sexes (i.e., again divide the 

covariance estimate by two for NGDC or multiply by two for HEDO/HORI/HOHA).  Since the 

variances are equal in the HOPI model, no transformation is necessary.

Sex-biased gene expression indicates locus-specific genotype-by-sex interactions 

producing different effects of an allele depending on the sex in which the allele is being 

expressed.  Global dosage compensation is not the same as sex-biased gene expression (Mank 

2009; Mank and Ellegren 2009b).  The former constitutes a chromosome-wide mechanism to 

equalize the effect of an allele on the single shared sex chromosome in the heterogametic sex with 

the two copies of the allele in the homogametic sex.  Genotype-by-sex interactions are an 

explanation for the existence of sexual dimorphism despite the sexes sharing the same genome 

(Mank 2009) and will decrease the between-sex additive genetic correlation on the sex 

chromosomes.  We note that the models developed above readily allow the incorporation of 

genotype-by-sex interactions, regardless of the form of global sex chromosome dosage 

compensation.  This further enables researchers to empirically evaluate the genetic architecture 

underlying sexually dimorphic traits, with particular attention on sex-linked additive genetic 

(co)variances.   
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Table 4.1. Evidence for the occurrence of global sex chromosome dosage compensation mechanisms in animals and plants.  Taxonomic 
information from Myers et al. (2013).

Class Order Family Organism
Sex chromosome 
system

Pattern of 
dosage 
compensation† Reference

Caryophyllales Caryophyllaceae Silene latifolia XX/XY NGDC Muyle et al. 2012

Craniata Galliformes Phasianidae

Gallus gallus 
(Domestic 
chicken) ZZ/ZW NGDC

Kuroiwa et al. 2002; Itoh 
et al. 2007; Ellegren et 
al. 2007; Mank and 
Ellegren 2009a; Itoh et 
al. 2010; but see 
McQueen et al. 2001

Craniata Gasterosteiformes Gasterosteidae
Gasterosteus 
aculeatus XX/XY NGDC Leder et al. 2010

Craniata Passeriformes Corvidae Corvus corone ZZ/ZW NGDC Wolf and Bryk 2011

Craniata 
(Infraclass: 
Eutheria)

(Placental 
mammals) XX/XY HORI

Lyon 1962; Johnston et 
al. 2008; Livernois et al. 
2012

Craniata 
(Infraclass: 
Metatheria)

(Marsupial 
mammals) XX/XY HOPI Cooper 1990

Craniata 
(Subclass: 
Prototheria) Monotremata Ornithorhynchidae

Ornithorhynch
us anatinus

XXXXXXXXXX/
XYXYXYXYXY NGDC Deakin et al. 2008

Insecta Coleoptera Tenebrionidae
Tribolium 
castaneum XX/XY HEDO Prince et al. 2010

Insecta Diptera Drosophilidae Drosophila XX/XY HEDO
Lucchesi 1978; Vicoso 

and Bachtrog 2009

Insecta Diptera Sciaridae
Sciara 
ocellaris XX/X0 HEDO da Cunha et al. 1994

Insecta Lepidoptera Bombycidae
Bombyx mori
(silkworm) ZZ/ZW NGDC

Arunkumar 2009; Zha et 
al. 2009; but see Walters 
and Hardcastle 2011
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Insecta Lepidoptera Nymphalidae
Heliconius 
erato ZZ/ZW NGDC

Johnson and Turner 
1979

Insecta Lepidoptera Nymphalidae
Heliconius 
melpomene ZZ/ZW NGDC

Johnson and Turner 
1979

Insecta Lepidoptera Pyralidae
Plodia 
interpunctella ZZ/ZW NGDC Harrison et al. 2012

Insecta Orthoptera Gryllidae
Acheta 
domesticus XX/XY HEDO Rao and Ali 1982

Insecta Orthoptera Gryllotalpidae
Gryllotalpa 
fossor XX/X0 HORI Rao and Padmaja 1992

Secernentea Rhabditida Rhabditidae
Caenorhabditi
s elegans XX/X0 HOHA

Vicoso and Bachtrog 
2009; Meyer 2010

Trematoda Strigeatida Schistosomatidae
Schistosoma 
mansoni ZZ/ZW NGDC

Vicoso and Bachtrog 
2011

†NGDC=no global doasge compensation, HEDO=doubling of expression in the heterogametic sex, HORI=random (with respect to parent of 
origin) inactivation of one allele in the homogametic sex, HOHA=halved expression for each allele in the homogametic sex, and 
HOPI=inactivation of the paternal allele in the homogametic sex
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Table 4.2. Properties of a bi-allelic, sex-linked locus in a population.  The average expression 
level of an allele (λi) enables all mechanisms of global dosage compensation to be modeled.

Homogametic Sex

Genotype A1A1 A1A2 A2A1 A2A2

Frequency p2 pq pq q2

Genotypic Value
0.5a(λp-hom + 
λp-het)

0.5aλp-hom -
0.5aλp-het

-0.5aλp-hom+
0.5aλp-het

-0.5a(λp-hom + 
λp-het)

Heterogametic Sex

Genotype A1 A2

Frequency p q

Genotypic Value bλp-hom -bλp-hom
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Table 4.3. Population-wide, sex-linked genotypic means and variances when dosage 
compensation is absent (NGDC) and under different forms of dosage compensation†.

Form of Dosage Compensation
General 
expressions NGDC HEDO HORI HOHA HOPI

Homogametic Sex
mean= 0.5a(λp-hom + λp-het)

(p-q)
a(p-q) a(p-q) 0.5a(p-q) 0.5a(p-q) 0.5a(p-q)

V(ghom)= pqa2[2(λp-hom+λp-

het)
2pq+(p2+q2)(λ2

p-

hom+λ2
p-het)-4pqλp-

homλp-het]

2pqa2 2pqa2 0.5pqa2 0.5pqa2 pqa2

Heterogametic Sex
mean= 0.5aλp-hom(p-q) 0.5a(p-q)‡ a(p-q)‡ 0.5a(p-q)‡ 0.5a(p-q)‡ 0.5a(p-q)‡

V(ghet)= λ2
p-hompqa2 pqa2‡ 4pqa2‡ pqa2‡ pqa2‡ pqa2‡

Sex-linked additive genetic 
variance of the heterogametic sex 
(σ2

S-het) in terms of the 
homogametic sex (σ2

S-hom) 0.5σ2
S-hom 2σ2

S-hom 2σ2
S-hom 2σ2

S-hom 1σ2
S-hom

†HEDO=doubling of expression in the heterogametic sex, HORI=random (with respect to parent of 
origin) inactivation of one allele in the homogametic sex, HOHA=halved expression for each allele 
in the homogametic sex, and HOPI=inactivation of the paternal allele in the homogametic sex

‡assuming the effect of an allele is the same in both sexes
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Table 4.4. Components of the sex-linked genotypic covariance between two individuals, i and j
when dosage compensation is absent (NGDC) and under different forms of dosage 
compensation†.

Form of Dosage Compensation

NGDC HEDO HORI HOHA HOPI

Ii,j ψi,j
‡ Li,j Li,j Li,j Li,j Li,j

homogametic - homogametic 2 P1/4 + P2/2 1 1 1 1 1

heterogametic - heterogametic 1 P1 0.5 2 2 2 1

homogametic - heterogametic  P1/2 1/    1

†Forms of Dosage Compensation as in Table 4.3

‡P1 and P2 are the probabilities of 1 and 2 pairs of identical genes at a locus, respectively
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Table 4.5. Sex-linked additive genetic breeding values as a function of parental breeding values 
and Mendelian sampling when dosage compensation is absent (NGDC) and under different forms 
of dosage compensation†.

NGDC HEDO HORI HOHA HOPI

αS-hom,i=
0.5αS-hom,p + 
αS-het,p + εi

0.5αS-hom,p + 
0.5αS-het,p + εi

0.5αS-hom,p + 
0.5αS-het,p + εi

0.5αS-hom,p + 
0.5αS-het,p + εi 0.5αS-hom,p + εi

αS-het,i= 0.5αS-hom,p + εi αS-hom,p + εi αS-hom,p + εi αS-hom,p + εi 0.5αS-hom,p + εi

†Forms of Dosage Compensation as in Table 4.3.
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Table 4.6. Equations to calculate the Mendelian sampling variance in sex-linked genetic effects 
for a given individual under the assumption of no global dosage compensation (NGDC) and four 
different forms of dosage compensation†.

Form of Dosage Compensation

NGDC HEDO / HORI / HOHA HOPI

both parents known

homogametic sex 0.25(1 - Fp-hom) 0.25(1 - Fp-hom) 0.25(3-Fp-hom)

heterogametic sex 0.25(1 - Fp-hom) 1 - Fp-hom 0.25(3-Fp-hom)

only homogametic sex 
parent unknown

homogametic sex 0.5 0.5 1

heterogametic sex 0.5 2 1

only heterogametic sex 
parent unknown

homogametic sex 0.25(3-Fp-hom) 0.25(3-Fp-hom) 0.25(3-Fp-hom)
both parents unknown

homogametic sex 1 1 1

heterogametic sex 0.5 2 1

†Forms of Dosage Compensation as in Table 4.3.
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CHAPTER 5

Sex differences in epistatic effects covary with the magnitude of sexual dimorphism in 

population crosses of water striders (Aquarius remigis).

Abstract

Phenotypic differences between females and males are widely observed in organisms with 

separate sexes.  How these sexual dimorphisms evolve despite the sexes sharing a majority of 

their genome remains an unresolved issue in evolutionary biology as theoretical models often 

disagree over the genetic mechanisms that are predicted to facilitate the evolution of sexual 

dimorphism.  Here we present results from population crosses in the water strider Aquarius 

remigis that were conducted to assess the empirical support for previous theoretical predictions.  

We improve on previous model selection and parameter estimation protocols used with joint-

scaling tests by introducing Akaike Information Criterion based multimodel inference when 

estimating the genetic effects responsible for the phenotypic differences among the 10 lines in 

each of our two population crosses.  Our results show significant differences between the sexes in 

the magnitude of composite genetic effects.  Further, between-sex differences in the three digenic 

epistatic effects and dominance maternal genetic effects are strongly associated with the 

magnitude of sexual dimorphism across a range of morphological traits.  As sexual dimorphism 

increased so too did the difference between female and male estimates of these four composite 

genetic effects.  Our results provide support for the prediction of sex-specific non-additive genetic 

effects facilitating the evolution of sexually dimorphic traits and have particular relevance in light 

of the previously noted role of epistasis and sexual conflict in the process of speciation.
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Introduction

Female and male organisms often have different phenotypes that we recognize as dimorphisms in 

primary and secondary sexual traits (Darwin 1874; Ghiselin 1974; Hedrick and Temeles 1989; 

Fairbairn 1997; Badyaev and Hill 2003; Fairbairn et al. 2007; Fairbairn 2013).  Sexual 

dimorphisms evolve and are maintained by selection favoring sex-specific optimal phenotypes 

(op. cit. and Meagher 1992; Roff 1997; Blanckenhorn 2005). However, correlations between the 

sexes in the expression of shared alleles impede the evolution of sexual dimorphism (Lande 1980; 

Reeve and Fairbairn 2001), creating genetic conflict between the sexes (Parker 1979; Arnqvist 

and Rowe 2005; Bonduriansky and Chenoweth 2009).  Because females and males share the 

majority of their genomes, genetic correlations for homologous traits between the sexes are 

widespread and generally high (>0.8, Roff 1997; Lynch and Walsh 1998; Poissant et al. 2010).  

Therefore, a major focus in evolutionary biology is the identification of genetic mechanisms that 

allow sexual dimorphisms to evolve in spite of shared genomes and strong genetic constraints on 

the independent evolution of the two sexes.   

Selection that acts in an opposing manner in females and males, called sexually 

antagonistic selection, is common due to the divergent reproductive roles between the sexes 

(Bonduriansky 2007; Cox and Calsbeek 2009; Innocenti and Morrow 2010).  When such 

selection acts at a given locus, it gives rise to intralocus sexual conflict (Rice 1992; Chippindale 

et al. 2001; Bonduriansky and Chenoweth 2009). Intralocus conflict can be resolved by genetic 

mechanisms that restrict allelic expression to one sex, such as sex-linkage, sex specific non-

additive genetic effects, sex-limited gene expression, genomic imprinting, and condition 

dependence (Fisher 1958; Kidwell et al. 1977; Rice 1984; Rhen 2000; Rice and Chippindale 

2001; Rice and Chippindale 2002; Day and Bonduriansky 2004; Bedhomme and Chippindale 

2007; Bonduriansky 2007; Bonduriansky and Chenoweth 2009; Fry 2010).
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Evolutionary theory predicts that alleles with sex-specific fitness effects will be located 

on or translocated to the sex chromosomes, where these occur (i.e., sex-linkage; Fisher 1958; 

Charlesworth and Charlesworth 1980; Rice 1984; Rice and Chippindale 2001; Charlesworth 

2002; Gibson et al. 2002).  In organisms with XX/XY or XX/XO chromosomal sex determination 

systems, X-linked recessive alleles are always expressed in males and crossing over only occurs 

between sex chromosomes in females (note that throughout we restrict discussion to XX/XY or 

XO systems, however the following arguments and results also apply to female heterogametic, 

ZZ/ZW, systems by reversing the sexes from the X-linked case presented).  When experiencing 

sexually antagonistic selection, a rare recessive allele located on the X chromosome and 

beneficial to males, but deleterious in females, is exposed to selection in males.  However, it is 

hidden from selection disfavoring the male beneficial allele in all but the small fraction of 

females with the homozygous recessive genotype.  A similar situation can be shown for the 

spread of a rare dominant allele beneficial in females, but deleterious in males.  Additionally, loci 

with sexually antagonistic alleles are predicted to accumulate on the X chromosome at a higher 

rate than autosomes (Charlesworth et al. 1987), because of the way the interaction of effective 

population size and variance in reproductive success differs between the autosomes and sex 

chromosomes (Caballero 1995; Charlesworth 2001; Laporte and Charlesworth 2002; Vicoso and 

Charlesworth 2009).  Altogether, these properties lead to the prediction that alleles with sexually 

antagonistic fitness effects should be overrepresented on the X chromosome (Kidwell et al. 1977; 

Curtsinger 1980; Rice 1984; Hedrick and Parker 1997).  

However, it remains undetermined whether or not sexually antagonistic genes are in fact 

overabundant on X chromosomes (Curtsinger 1980; Reinhold 1998; Gibson et al. 2002; Parisi et 

al. 2003; Fitzpatrick 2004; Bonduriansky 2007; Long and Rice 2007; Mank 2009; Innocenti and 

Morrow 2010) and to date only a few empirical studies support this prediction (Chippindale et al. 
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2001; Gibson et al. 2002; Pischedda and Chippindale 2006; Foerster et al. 2007; Connallon and 

Jakubowski 2009).  Further, the growing body of literature investigating epigenetic inheritance 

patterns and sexual dimorphism in organisms without chromosomal sex determination (e.g., some 

fish and reptiles) suggests that autosomes are a plausible location for sexually antagonistic 

variation (Mank 2009).  Finally, the prediction of X-linkage from Rice’s (1984) model is 

sensitive to an assumption of equal dominance in each sex and a more recent model predicts that 

genes with sex-specific dominance effects on fitness will more often accumulate on the 

autosomes when experiencing sexually antagonistic selection (Fry 2010).   

Though the predictions from theoretical models are useful for identifying potential 

genetic mechanisms mitigating intralocus sexual conflict, most models to date (e.g., Kidwell et al. 

1977; Rice 1984; Fry 2010) have been based on single-locus genetics and hence do not 

adequately predict the complexities of the genetic architectures underlying the polygenic bases 

for sexually dimorphic traits (Mank 2009; Connallon and Clark 2010).  Empirical study of the 

properties of genetic architectures that facilitate the evolution of sexual dimorphism has focused 

on (i) quantifying differences between the sexes at the level of gene expression and how sex-

specific selection shapes the genome (e.g., Gibson et al. 2004; Ellegren and Parsch 2007; Mank 

2009), (ii) separating the autosomal versus sex-linked  contribution of additive genetic variance to 

population-wide variation and how these are associated with sexual dimorphism (e.g., Fairbairn 

and Roff 2006; Poissant et al. 2010; Husby et al. 2012), and (iii) contrasting the allelic effects and 

gene frequencies between populations or inbred lines to locate mechanisms underlying sexually 

dimorphic traits (e.g., Reinhold 1994, 1998; Wolfenbarger and Wilkinson 2001).  The line cross 

approach (i.e., method iii) is particularly advantageous because it can be used to identify the 

location (autosomal vs. sex-chromosomal) and characterize the mode (e.g., additive, dominant, 

epistatic, etc.) of genetic effects contributing to sexually dimorphic traits, while simultaneously 
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characterizing the phenotypic impact of these genetic effects.  The latter point is an advantage of 

the line cross method over gene expression studies (i.e., method i).  Line crosses quantify the net 

effect of gene action leading to phenotypic differences between populations.  Thus, line cross 

analyses may not provide as much insight into the within-population gene action and evolutionary 

potential (e.g., genetic variation) as population variance partitioning methods (i.e., method ii).  

However, line cross analyses are more suitable than variance partitioning methods for studying 

the function and importance of epistasis in evolutionary dynamics. This is evidenced by a robust 

body of empirical work studying the role of epistasis in natural populations through line crosses 

(e.g., Hard et al. 1992; Lair et al. 1997; Armbruster et al. 1998; Fenster and Galloway 2000; Fox 

et al. 2004) as opposed to the variance partitioning approach.  The latter has largely ignored 

epistasis because of the inherent difficulty in obtaining estimates and the fact that variance 

partitioning is overall a less informative approach to studying non-additive aspects of genetic

architectures, such as distinguishing between directional and non-directional epistasis (Hansen in 

press).  

Past line cross analyses have been able to identify many of the genetic mechanisms 

proposed to explain the evolution of sexually dimorphic traits.  Sex-differences in heterosis have 

long been observed in crosses between lines or populations (e.g., Cox 1960; Stonaker 1963; 

White et al. 1970) and a few line cross analyses find evidence for sex-specific patterns of non-

additive genetic effects (e.g., Fox et al. 2004, 2011).  Also, large effects of X-linked genes are 

commonly found in line crosses (e.g., Grula and Taylor 1980; Barbato 1991; Hagger and 

Stranzinger 1992; Reinhold 1994, 1998, 2002; Wolfenbarger and Wilkinson 2001) and are 

primarily associated with sexually selected traits (Reinhold 1999; Wolfenbarger and Wilkinson 

2001).  Despite the accumulating evidence from line cross analyses for both X-linkage and sex-
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specific genetic architectures, the extent to which the presence and magnitude of these effects are 

associated with the magnitude of sexual dimorphism has yet to be investigated.  

We use line crosses between populations of the water strider Aquarius remigis to test the 

prediction that sex-specific selection will lead to the evolution of sex-linked and/or sex-specific 

non-additive genetic effects.  Our experimental design allows us to quantify the autosomal and X-

linked sources of additive and non-additive genetic effects in each sex across a range of traits 

varying in both the direction and magnitude of sexual dimorphism.  We present the results of two 

different population crosses, with 10 genetic lines in each experimental cross.  To quantify the 

genetic architecture responsible for phenotypic differences among these lines, we demonstrate a

novel application of multimodel inference to improve upon previous protocols for analyzing 

population crosses.  Using this robust methodology, we show that the contribution of non-

additive and X-linked genetic effects to observed differences among lines differs between the 

sexes.  Finally, we show that the magnitude of differences between the sexes in epistatic genetic 

effects correlates positively with the magnitude of sexual dimorphism as predicted.

Materials and methods

Study organism

The water strider Aquarius remigis is a common and widespread semi-aquatic insect throughout 

North America, inhabiting the surfaces of streams and small rivers (Scudder 1971; Calabrese 

1979; Polhemus and Chapman 1979; Preziosi and Fairbairn 1992; Gallant et al. 1993).  Adults 

range from 12-16mm in total length (Fairbairn 2005) and take about 35 days to develop from egg 

laying to final molt when reared at 25° C.  Most populations consist primarily of wingless, non-

flying individuals and hence there is very little gene flow between populations on different 

streams (Zera 1981; Preziosi and Fairbairn 1992).  Winged individuals and dispersal between 
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streams are more common in Californian populations (Kaitala and Dingle 1992; Fairbairn and 

King 2009), but allozyme studies nevertheless indicate significant genetic differentiation of 

Californian populations among different watersheds (Preziosi and Fairbairn 1992).  Adults from 

geographically distinct populations interbreed readily in the laboratory (e.g., Gallant and 

Fairbairn 1997).  As is typical of water striders (Hemiptera: Gerridae), A. remigis has an XX/XO 

system of chromosomal sex determination with 10 pairs of autosomes, an additional pair of X 

chromosomes in females, and a single X chromosome in males (the haploid autosomal number 

ranges from 9 to 11 in other gerrid species; Andersen 1982; Spence and Madison 1986; Kiseliova 

and Fairbairn, unpublished data).  

Sexual dimorphism and sex-specific selection on morphological traits in the wild, 

throughout the adult lifespan of A. remigis, have been detailed extensively over the past three 

decades (e.g., Preziosi and Fairbairn 2000; Ferguson and Fairbairn 2000; Fairbairn 2007).  Across 

their range, females average about 8% larger than males in total length but the magnitude and 

direction of sexual dimorphism varies greatly among different body components: genital 

components and the width of the front-femur are larger in males, female abdomens are larger than 

male abdomens, and thorax and leg components tend to not differ between the sexes.  The most 

extreme dimorphisms are in genital length (2.5 to 3 times longer in males) and abdomen length 

(60% to 70% longer in females).  Previous studies have found significant heritabilities for all 

body components in both sexes and significant genetic correlations among traits, both within and 

between the sexes (Preziosi and Roff 1998; Fairbairn 2007).  Estimates of selection in the wild 

indicate that the magnitude and direction of these sexual dimorphisms reflect a balance between 

natural and sexual selection.  Both sexes experience net stabilizing selection on total length 

(Preziosi and Fairbairn 2000).  In females, selection on total length is driven by fecundity 

selection, favoring the evolution of longer abdomens, balanced by longevity selection favoring 
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the evolution of shorter total length (Preziosi and Fairbairn 1997, 2000).  Males experience sexual 

selection for longer genitalia opposed by weaker sexual and longevity selection for small somatic 

size; resulting in the observed net stabilizing selection on total length (Preziosi and Fairbairn 

1996; Ferguson and Fairbairn 2000; Preziosi and Fairbairn 2000; Bertin and Fairbairn 2005).  

Further, males also experience weak sexual selection favoring smaller mid-femur lengths 

(Preziosi and Roff 1998; Preziosi and Fairbairn 2000).  

Collection, breeding design, and rearing protocols

We collected A. remigis from three populations in southern California to use in population line 

crosses.  For the first experiment in the spring of 2010, we collected adults and nymphs from 

Prisoners’ Stream on Santa Cruz Island (SCI; latitude=33.997529°N, longitude=119.715192°W; 

n=32 females, 45 males, and 80 nymphs) and from Rattlesnake Creek near Santa Barbara (RSC; 

latitude=34.459683°N, longitude=119.692105°W; n=119 females, 81 males, and 272 nymphs), 

approximately 50 km north of SCI.  The second experiment was initiated in the spring of 2011 by 

collecting individuals from the same SCI location (n=90 females, 75 males, and 126 nymphs) and 

from a stream running through Los Laureles Canyon near Lake Cachuma in southern California 

(LLC; latitude=34.521504°N, longitude=119.839927°W; n=22 females, 37 males, and 123 

nymphs), approximately 59km north-northwest of SCI and approximately 15km northwest of 

RSC.  These populations were chosen to maximize the contrast in body size between the 

populations within each experiment.  Water striders from SCI were used in both crosses and are 

among the largest in North America, whereas, RSC and LLC are similar in size and are among 

the smallest populations in North America (see Appendix table A1 in Fairbairn 2005).  Because 

of the similarity in size between the RSC and LLC populations, we could not use line cross 

analyses to compare the genetic basis of morphological differences between these populations.



122

Individuals were collected from the wild and placed in laboratory stream tanks (140cm 

long x 45cm wide x 10cm deep) at room temperature (range 18-26°C) with a light:dark cycle of 

14:10 hours.  Females, males, and juveniles of each population were kept in separate tanks at 

approximately equal densities and were given Styrofoam cups as resting spots and a place for 

female oviposition.  The juvenile tanks were checked daily for newly eclosed adults and any 

adults that were discovered were moved to a new tank containing individuals of the same sex and 

population.   Allowing nymphs to eclose as adults in the laboratory ensured we had virgin 

females to use for mating to a male from a different population.  After all newly eclosed females 

had been adults for at least seven days, we set up mating pairs in small (35cm long x 20cm wide x 

7cm deep) cages located inside environmental growth chambers.  The proportion of winged 

versus non-winged individuals used to create mating pairs reflected the distribution of wing 

morphologies found in each of the wild populations.  We created 10 distinct genetic lines from 

each population cross in each experiment (Table 5.1).  

The small rearing cages were filled with de-ionized water and arranged as blocks in 

growth chambers that were set to maintain a constant 25°C and 14:10hour light cycle.  The 

different blocks in the growth chambers correspond to different shelves.  Cages were ordered in a 

randomly assigned sequence according to the cross type.  Mating pairs housed in the small 

rearing cages were given half of a Styrofoam cup and a disk of foam as resting and oviposition 

sites.  Mating pairs were kept in the rearing cages until at least 20 eggs had developed eyespots.  

The presence and development of eggs was checked daily and pairs that had not produced any 

eggs were replaced.  Once nymphs hatched, additional Styrofoam strips were added as resting 

locations.  Upon eclosion as adults, individuals were uniquely marked and placed in laboratory 

stream tanks (separately for each sex and line).  Individuals from the first generation of lab-reared 

crosses were later used to create the second generation using the same protocol as above.  These 
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mating pairs were chosen to ensure even representation from each family within the first 

generation lines.  Mating pairs were then assigned at random within lines, except for the F2 and 

F2r lines where extra care had to be taken to ensure no sibling matings (note, sibling mating is 

impossible in the backcross lines).  Adults from the second generation were preserved one day 

post-eclosion in 70% ethanol.   

Adults in stream tanks were given approximately half of a cricket (either adult Gryllus

firmus or 6wk. old Acheta domestica) per day (6days/wk.) and supplemented with adult 

Drosophila melanogaster.  Nymphs reared in the growth chamber were fed daily in excess of that 

required for maximum longevity (Blanckenhorn et al. 1995).  This consisted of approximately 1-3 

Drosophila per day for first through third instar nymphs.  Beginning with the third instar, nymphs 

were given half of a 4wk. old A. domestica in addition to Drosophila.    

Morphological traits were measured from digital photos of each individual, obtained 

using a Spot Insight 3.2.0 color camera attached to a Leica Wild M3c dissecting microscope.  

Using the digitizing software SigmaScan Pro 5.0, we took linear measurements of thorax length 

(Lthorax), abdomen length (Labd), total length (Ltotal; note that this measure includes Lthorax, 

Labd, Lgenital, and Lpyg which are also included in our analyses), and abdomen width (Wabd).  

We also measured length of the front femur (Lff), width of front-femur (Wff), length of mid-

femur (Lmf), and length of hind-femur (Lhf).  We measured the three legs on the right-hand side 

of the body in ventral view.  If these legs were missing, deformed, or the landmarks were unclear, 

we instead measured the leg on the left-hand side of the body.  We also measured total genital 

length (Lgenital), length of segment 8 (Lseg8), male pygophore length (Lpyg; sex-limited trait 

that is a component of Lgenital), length of segment 7 along the margin of the body (Lseg7mar), 

and width between the connexival spines (Wspine).  Pictures were taken at 12.5x magnification 

for all somatic and leg components and at 20x magnification for the genital components.  To 
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remove the confounding effects of wing morphology on the size of body components (Fairbairn 

1992), only wingless individuals were used in the analyses (84% of striders reared were 

wingless).   

X-linkage analyses

Comparison of the two female reciprocal hybrid lines, produced in the first generation of crossing 

(i.e., F1 and F1r) was used to assess the influence of maternal effects on phenotypic differences.  

If maternal effects are not present, then comparison of the first generation male reciprocal hybrids 

can be used to assess the extent to which X-linked effects differ between the two parent 

populations (Carson and Lande 1984; Nunney 1996).  Male F1 and F1r lines both inherit a 

haploid set of autosomes from each population, but only a single X chromosome inherited from 

their maternal population.  If maternal effects or X-linkage contribute to the difference between 

these lines, the direction of divergence between trait averages of each reciprocal line should be in 

the direction of each line’s maternal population.  Therefore, to test these hypotheses we used one-

tailed tests.  To control for the probability of incorrectly rejecting one or more true null 

hypotheses as a consequence of conducting multiple tests for the presence of X-linkage and/or 

maternal effects, a sequential Bonferroni adjustment (Holm 1979; Rice 1989) was applied to the 

resulting p-values from the female and male t-tests.  

Line cross genetic analyses

We used joint-scaling tests to estimate the composite genetic effects explaining the differences 

between line means.  Cavalli (1952) and Hayman (1960b) first suggested the joint scaling test as 

a method to test the significance of how well certain genetic models fit the observed line means.  

Joint-scaling tests use a least-squares regression of line means produced by a line cross breeding 
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design to estimate the net or composite genetic effects (the sum of the allelic effects across all 

loci on the genotypic value) responsible for the differences in phenotype observed between two 

populations (Hayman 1958, 1960a; Lynch and Walsh 1998 ch. 9).  The matrix equation of the 

linear regression model is:

eMaz  (1)  

where z is a 10x1 vector containing our 10 line means, M is a matrix of coefficients that specify 

the contributions of composite genetic effects to the deviation of each line from the F2 reference 

population, a is the px1 vector of p composite genetic effects, and e is the 10x1 vector of residual 

errors (vector of deviations between observed and predicted line means).  The matrix M contains 

all ones in the first column to estimate an intercept of the regression and an additional column for 

each of the following composite genetic effects: additive genetic [a], dominance genetic [d], three 

digenic epistatic ([axa], [axd], and [dxd]), maternal additive genetic [ma], maternal dominance 

genetic [md], cytoplasmic genetic [c], additive genetic X-linked [Xa], and dominance genetic X-

linked [Xd].  We used an M matrix with the F2 line mean as the reference population in our 

analyses (see Appendix C1 Table C1.1).  The F2 has the advantage of being in Hardy-Weinberg 

and gametic phase equilibrium for genes derived within a population as well as those genes 

derived between populations (Lynch and Walsh 1998 p.206).  Alternatively, a hypothetical 

population of F∞ offspring could be used for the reference population (e.g., Kearsey and Pooni 

1996).  The choice of one particular reference population over another is trivial, as they yield 

similar results that can be translated between the two parameterizations (Basford and De Lacy 

1979; Roff and Emerson 2006).  Further, we used an M matrix specific to each sex for separate 

female and male regressions (e.g., Polak and Starmer 2001).   
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Typically, model fitting begins with a simple additive only genetic model and proceeds 

sequentially to include more genetic effects (e.g., dominance, epistasis, X-linkage, etc.) to 

improve the fit of the expectation from a particular genetic model to the observed data.  The least-

squares estimates of a are obtained by weighting the regression by the matrix V (the diagonal 

elements are equal to the squared standard errors of the line means) to account for among line 

differences in the accuracy with which line means have been estimated.  Model fit is then

assessed using a χ2-distributed, weighted residual sum-of-squares test statistic:
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(Lynch and Walsh 1998, chapter 9).  In equation 2, ei is the ith element of e and vii is the ith 

diagonal element of V.  Next, hierarchical genetic models are either compared to one another 

using a likelihood-ratio test or the most parsimonious genetic model is selected using Akaike’s 

Information Criterion (AIC; e.g., Bieri and Kawecki 2003; Fox et al. 2004).  However, for linear 

regression models in general, and particularly for joint-scaling tests, the magnitude of a parameter 

estimate is often dependent upon the other parameters included in the model (Kearsey and Pooni 

1996, p.32-33; Bieri and Kawecki 2003; Burnham and Anderson 2002, chapter 1).  Therefore, the 

first approach, which compares hierarchical genetic models to one another via likelihood-ratio 

testing, yields biased estimates of composite genetic effects once epistatic, maternal, or sex-

linked genetic effects are present but not in the model (Kearsey and Pooni 1996).  Further, there 

is no statistical theory supporting the use of likelihood-ratio tests to conduct hypothesis testing as 

a basis for model selection (Burnham and Anderson 2002, p. 42).  Employing AIC in joint-

scaling tests was advocated by Bieri and Kawecki (2003) to select the most parsimonious model 
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[defined by Bieri and Kawecki (2003) as “the model that made the best compromise between the 

amount of variance explained and the number of parameters”].  Past implementations of this 

approach have only used the parameter estimates from the most parsimonious model (identified 

with AIC model selection) in analyses.  However, this ignores both model selection bias and 

model selection uncertainty (Burnham and Anderson 2002, pp. 43-47).  For example, parameter 

estimates of composite genetic effects that contribute very little to the difference between two 

populations in a cross, but are retained in the most parsimonious model, are biased upwards and 

their sampling variances are biased downwards.  This results in increased type I error rates when 

employing the typical post hoc tests for the statistical significance of each parameter estimate in 

the AIC selected best model (e.g., Bieri and Kawecki 2003; Fox et al. 2004).  Instead, we used 

multimodel inference to obtain model-averaged parameter estimates for each composite genetic 

effect considered in this study and estimates of unconditional sampling variances over the entire 

set of candidate models (Burnham and Anderson 2002 ch. 4).  Since multimodel inference has not 

previously been used in conjunction with joint-scaling tests, we describe our approach below.

First, we a priori chose a set of candidate models specific to each sex.  Female and male 

candidate model sets differed because in males the X-linked dominance genetic effect [Xd] is un-

defined and the X-linked additive genetic effect [Xa] is completely confounded with the additive 

maternal genetic effect [ma] for the 10 lines we created in our crosses.  Therefore, in the male 

models we chose only the [ma] composite genetic effect, but note that the quantity estimated by 

this parameter represents the net effect of both additive maternal and X-linked genetic effects.  If 

all possible combinations of the eight genetic parameters for males or the 10 genetic parameters 

for females were considered, we would have a total of 256 (28) or 1024 (210) unique models for 

males and females, respectively (e.g., Bieri and Kawecki 2003; Fox et al. 2004, 2011).  To reduce 

the number of candidate models, models either included or excluded the three digenic epistatic 
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effects ([axa], [axd], and [dxd]) together as a group, the two maternal genetic effects ([ma] and 

[md]) together as a group, and the two X-linked genetic effects ([Xa] and [Xd] for females only) as 

a group (e.g., Bieri and Kawecki 2003; Fox et al. 2004; Fox et al. 2011).  We also included the 

composite additive genetic effect [a] in all models.  Further, we limited the total number of model 

parameters being estimated (p genetic parameters plus the intercept) to one less than the total 

number of line means observed to assess the fit of even the most highly parameterized models 

(ch. 9, Lynch and Walsh 1998).  These conditions resulted in 16 candidate model sets for males 

and 32 for females.

Each model was fitted to the observed line means for each sex and each experiment 

separately.  The weighted residual sums-of-squares were calculated (equation 2) and parameter 

estimates ( â ) and sampling variances were obtained for each composite genetic effect in a 

particular model (Lynch and Walsh 1998, chapter 9).  The AIC is calculated as:

AIC = -2ln(L) + 2K (3)

where L is the likelihood of the model given the data and K is the total number of parameters 

estimated in the regression.  For weighted least-squares regression, this equation can be re-written 

as:

AIC = n ln(RSSW) + 2K (4)

(see Appendix C5 for a derivation of the weighted least-squares regression log-likelihood and 

calculation of K for these models). 
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Using the AIC values of all models in the candidate set, we calculated the AIC 

differences for the mth model as Δm = AICm – AICmin (Burnham and Anderson 2002, pp. 70-71).  

Here AICmin is the model with the minimum AIC value for a particular trait in a given sex for a 

given experiment.  From these, we calculated the Akaike weights as:
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(Burnham and Anderson 2002, p. 75).  In equation 5 the Akaike weight, or relative likelihood of 

the model given the data, is simply the likelihood of model m given the data relative to the sum of 

likelihoods across all R models in the candidate set.  The Akaike weights from every model in the 

candidate set (p. 152 Burnham and Anderson 2002) were then used to calculate a model averaged 

estimate for each composite genetic parameter.  The parameter estimate from each model is 

weighted by the relative likelihood of that model given the data:
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(Burnham and Anderson 2002, p. 150), where ̂ is the model averaged parameter estimate 

(MAPE) of a given composite genetic effect and m̂ is the parameter estimate of that composite 

genetic effect in the mth model.  If a parameter does not occur in a given model, then m̂ =0.  We 

obtained an estimate of the unconditional standard error for a model averaged parameter estimate 

as:
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(Burnham and Anderson 2002, p. 162), where )ˆ(rvaˆ m is the squared standard error of the 

parameter estimate from the mth model.  The MAPE (equation 6) and its standard error (equation 

7) are unconditional with respect to any one model, but they are still conditional on the chosen set 

of candidate models.

Joint-scaling tests were conducted separately for the sexes within each experiment.  

Across experiments, however, the same candidate set of models were used for each sex.  When 

comparing the MAPEs between sexes, we added the female additive X-linked MAPE (Xa) to the 

female additive maternal genetic MAPE (ma).  This is the equivalent to the quantity estimated by 

the male maternal genetic MAPE, since we could not statistically separate male additive maternal 

genetic effects from male additive X-linked genetic effects in our experiments.  To correct for 

differences in mean phenotype between sexes and experiments, we divided the MAPEs and their 

standard errors by the phenotypic difference between the means of parental lines for a given sex 

(Fox et al. 2011).  This standardized the MAPEs (and standard errors) and converted them into 

expressions describing the proportion of phenotypic difference between the parental lines that can 

be attributed to the estimate of each composite genetic effect (i.e., MAPE).  To test for 

differences in MAPEs between sexes and experiments, we calculated Wald chi-squared statistics 

for each MAPE:

])ˆ()ˆ([

)ˆˆ(
2

2
2

1

2
212

1 ˆˆ 
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(Fox et al. 2004, 2011).  In equation 6, the subscripts 1 and 2 refer to a particular experiment and 

sex combination. 

We conducted linear regressions of the female and male MAPE of each composite 

genetic effect on the sexual dimorphism index of the traits studied to test the prediction that 

differences between the sexes in composite genetic effects should covary with the magnitude of 

sexual dimorphism observed in the parent populations.  The sexual dimorphism index (SDI) is 

calculated as: (mean size of the larger sex / mean size of the smaller sex) – 1 (Lovich and 

Gibbons 1992; Fairbairn et al. 2007).  By convention, the SDI is arbitrarily assigned a negative 

value when males are the larger sex and a positive value when females are the larger sex.  The 

SDI only differs between parent populations in abdomen length, front-femur length, and spine 

width.  Although statistically significant, these differences in SDI are relatively minor (abdomen 

length: SDIs in experiment one=0.640 vs. 0.622 and experiment two=0.633 vs. 0.606, front-femur 

length: SDIs in experiment one=0.005 vs. -0.032 and experiment two=-0.017 vs -0.041, and spine 

width: SDIs in experiment one=-0.058 vs. -0.129 and experiment two=-0.053 vs. -0.149).  We 

therefore used the average SDI of the two parent populations.  Specifically, we used the absolute 

value of the SDI in our regressions with MAPEs, because we are interested in how the composite 

genetic effects covary with the magnitude, and not the direction, of sexual dimorphism. 

We conducted a separate regression analysis for each of the eight composite genetic 

effects estimated in both sexes.  A single regression analysis modeled each trait’s MAPE of one 

type of composite genetic effect as a function of the categorical variable sex, the covariate SDI, 

and the interaction between sex and SDI.  We weighted the regression by the unconditional 

sampling error of the MAPEs ( )ˆ(ˆ ES ) to incorporate differences in precision among these 

estimates into the linear models.  We first used the initial regression model to compare the female 
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and male slopes of the relationship between the MAPEs and SDI.  If the slopes of females and 

males did not differ significantly from one another (p>0.05 for the interaction term between sex 

and SDI in the model), we instead modeled the relationship between the MAPEs and SDI fitting a 

common slope for both sexes (i.e., conducting a second model with sex and SDI as main effects, 

but without the interaction between sex and SDI).  

All analyses were performed on both un-transformed and log-transformed measurement 

data.  However, results from the transformed data were quantitatively similar and qualitatively the 

same as results from analyses on the un-transformed data.  Therefore, we only report the results 

from analyses on un-transformed data.  Additionally, to remove any confounding effects of 

rearing cage and/or among family differences within lines, we used cage means for all analyses.  

This approach has the added benefit of creating more normally distributed data upon which to 

conduct our parametric statistical tests.  All analyses were performed using R version 2.15.0 (R 

Development Core Team. 2012).

Results

The line cross breeding design produced a combined total of 3,535 water striders from the two 

experiments.  The number of individuals of each sex reared from the line cross as well as the 

number of cage means used for each line in the analyses are shown in table 5.1.  

Maternal effects and X-linkage: First generation reciprocal crosses

Across all traits, our comparisons of the first generation reciprocal hybrid female lines provided 

little evidence of maternal genetic effects (Table 5.2).  Only mid-femur length in experiment one 

and the leg traits and two genital traits in experiment two showed evidence of a significant 

difference between the reciprocal hybrid lines of females.  Of these, only the difference for front-
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femur width (Wff) remained significant at the experiment-wide critical value after a sequential 

Bonferroni correction.

In experiment one, none of the differences between the two male reciprocal hybrids in the 

first generation were significant (at either and individual p-value threshold of 0.05 or after 

sequential Bonferroni correction; Table 5.2).  In the second experiment, front-femur width and 

segment 8 length showed significant differences between the lines at the significance level for 

individual tests (p<0.05), however these differences were no longer significant after controlling 

for multiple tests using the sequential Bonferroni correction.  Therefore, we conclude that we find 

no evidence for X-linkage of the male morphological traits.

Many of the differences between the means of the male F1 line (P1 dam x P2 sire) and 

the F1r line (P2 dam x P1 sire) were in the opposite direction to that expected if maternal genetic 

effects and or X-linked genetic effects were present (Figures 5.1, 5.2, and 5.3).  If the differences 

between parent populations were due to autosomal additive genetic effects only, we would expect 

the male F1 and F1r line means to be equal.  Given that animals from Santa Cruz Island (SCI=P2) 

are larger than those from the two mainland populations (RSC[Exp. 1], LLC[Exp. 2]=P1), if 

maternal or X-linked genetic effects differed between the parent populations, then the F1 line 

mean would be less than the average of the two parent populations and the F1r would be greater 

than the average of the two parent populations.  For example, male F1 and F1r line means for 

thorax length in figure 5.1 are expected to fall on the dashed line under a purely autosomal 

additive genetic model.  If maternal or X-linked genetic effects are present, then the F1 (RSC x 

SCI) line mean would be expected to more closely resemble the maternal population (P1=RSC x 

RSC) phenotype and fall below the dashed line.  Similarly, the F1r (SCI x RSC) line mean would 

be expected above the dashed line.  The opposite pattern can be seen for 13 out of 16 traits in 

experiment one and six out of 16 traits in experiment two (also see figures 5.1-5.3) where the F1 
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line mean is greater than the F1r line mean.  Overall, these results indicate that we found no 

support for X-linkage or maternal genetic effects contributing to the differences between first 

generation hybrid lines.    

Joint-scaling tests

An additive only model was not sufficient to explain the differences between populations for 

either female or male traits in both experiments (see for example, Appendix C2 Tables C2.2, 

C2.5, C2.8, C2.11).  This can also be seen in figures 5.1-5.3 where most of the line means do not 

occur along the line denoting the additive expectation (i.e., the dashed line).  Out of all the 

different genetic models in our candidate set, the models that included non-additive and maternal 

genetic effects as well as X-linked effects displayed the lowest AIC values (Table 5.3 and see 

Appendix C2 for all AIC values, AIC differences, and Akaike weights).  Analyses of the female 

line means allowed for separate estimation of the additive maternal genetic effects (ma) from the 

additive X-linked effects (Xa).  Often, combinations of maternal and X-linked effects were 

included in the AIC best model.  When extending the range of models considered from just the 

AIC best model to those models with AIC values within two of the best AIC value (ΔAIC<2;

considered a guideline for identifying models fitting the data with equal support as the best 

model; Burnham and Anderson 2002), seven traits (out of 12) in each experiment had a model 

with both X-linked and maternal genetic effects in the extended set of best models (see Appendix 

C2).  

The magnitudes of model averaged parameter estimates (MAPEs), standardized by the 

difference in parent population line means (i.e., P2 minus P1), indicate large contributions of non-

additive and maternal or X-linked composite genetic effects to the differences between the parent 

population line means in both sexes and experiments (see Appendix C3.1).  However, the 
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contribution of composite genetic effects to differences between parent population line means 

differed for females and males (Figure 5.4).  Wald test statistics indicate that some non-additive 

MAPEs did differ significantly between the sexes (Table 5.4).  Only three composite genetic 

effect MAPEs in experiment one differed between the sexes, whereas six differed between the 

sexes in experiment two (Figure 5.4).  The MAPEs for dominance-by-dominance epistasis (dxd) 

in segment 8 length differed between the sexes in both experiments.  Only the experiment two 

difference between the sexes in MAPEs for dxd in segment 8 length remained significant at the 

sequential Bonferroni adjusted critical value.  However, the sequential Bonferroni adjustment is 

probably overly conservative when applied to MAPEs (for a given trait, MAPEs for all composite 

genetic effects are highly interdependent).

We tested for an association between the magnitude of sexual dimorphism and each 

composite genetic effect’s MAPE in both sexes.  The SDI varied greatly among the 12 traits 

studied (Table 5.5); ranging from genital length being 191% to 202% larger in males to abdomen 

length being 61% to 64% larger in females.  Increased sexual dimorphism was associated with 

more negative values of the dxd composite genetic effects in experiment one and more positive 

values of the d effects in experiment two, but this relationship did not differ between the sexes 

(Table 5.6).  This indicates that the net effects of dominant (d) and dominance-by-dominance 

epistatic (dxd) alleles are in the direction of the populations with larger water striders (P2) and 

smaller water striders (P1, either RSC or LLC), respectively.  Further, with greater magnitudes of 

sexual dimorphism, the net dominance or dominance-by-dominance epistatic effects of alleles 

had a larger contribution to phenotypic differences among lines.    

In the first experiment, the relationship between sexual dimorphism and the additive-by-

additive (axa) and additive-by-dominance (axd) epistatic genetic effects differed between the 

sexes (Table 5.6, Figure 5.5).  For both of these composite genetic effects, 9 (out of 13) axa and 
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10 axd MAPEs in females were within one standard error from zero and did not change with the 

level of sexual dimorphism across traits (see Appendix C3.1).  However, male MAPEs of both 

additive-by-additive and additive-by-dominance epistasis became more negative as the sexual 

dimorphism of the traits increased (Figure 5.5), as indicated by a negative slope in males that is 

significantly different from the female slope (Table 5.6).  In the second experiment, these 

components neither differed between sexes nor did they show any significant relationship with 

sexual dimorphism (Table 5.6).  However, in the second experiment the magnitude of both 

dominance-by-dominance epistasis (dxd) and dominance maternal genetic effects (md) showed a 

relationship with the magnitude of sexual dimorphism and this differed significantly between the 

sexes (Table 5.6).  Again, the female MAPEs of these parameters did not show any relationship 

with the degree of sexual dimorphism across traits.   However, the estimates of dominance-by-

dominance (dxd) and dominance maternal genetic effects (md) in male traits were more negative 

as sexual dimorphism increased (Figure 5.5).  

Discussion

We conducted crosses between natural populations of the water strider, A. remigis, to test for the 

presence of X-linked genetic effects and to quantify the genetic effects responsible for variation 

in the magnitude of sexual dimorphism across a range of morphological traits.  We found 17 

estimates (across all traits) of non-additive composite genetic effects that differed in magnitude 

between females and males.  Further, our results suggest that increased sexual dimorphism is 

associated with increased negative epistatic (axa, axd, and dxd) and maternal dominance genetic 

effects (md) in males, but not females.

Unfortunately, our experimental design did not allow a direct comparison between our 

two methods of assessing the contribution of X-linked effects to male phenotypes: (i) tests using 
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male F1 hybrid lines to assess the contribution of X-linked effects and (ii) joint scaling tests using 

the 10 genetic lines to quantify the phenotypic effects of X-linked genes in males.  The 

comparison of first generation reciprocals can only test for X-linkage in males (assuming no 

maternal effects).  In the joint scaling tests on the lines created in our experiments we could only 

estimate one parameter to summarize the net effect of both additive X-linked and additive 

maternal genetic effects in male traits.  If X-linked and maternal genetic effects are opposite in 

sign, they might cancel each other out to produce no net effect.  Because of this, joint-scaling 

tests are prone to type II errors (Bradshaw and Holzapfel 2000).  However, the use of the joint-

scaling test allows for the independent detection of X-linked effects on differences in female 

phenotypes among all 10 lines.  

The evidence from all of our analyes indicates that our results are equivocal with respect 

to confirming the prediction of X-linked genetic effects in the genetic architecture of sexually 

dimorphic traits.  Our data show no indication that genetic effects on the X chromosome are 

sufficient to explain differences between the first generation reciprocal hybrid male lines.  When 

studying the genetic effects responsible for line differences among all 10 lines in the two 

experiments, X-linked composite genetic effects were important components of the models 

identified by the joint-scaling tests in female traits.  However, we saw no difference between 

sexually dimorphic and non-dimorphic traits in the importance of X-linked effects.  Instead, 

differences between the sexes in the magnitude of non-additive genetic effects were correlated 

with the degree of sexual dimorphism across traits.  Thus, our results demonstrate that sex-

specific non-additive effects better explain the sex differences in genetic architecture underlying 

sexual dimorphism than do X-linked genetic effects.  Therefore, of the two main predictions from 

evolutionary theory that have been proposed to explain the genetic architecture facilitating the 
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evolution of sexual dimorphisms, our results are most consistent with the prediction of sex-

specific non-additive genetic effects.

Alternatively, X-by-autosomal epistatic interactions, where the effect of an autosomal 

gene depends on the genotype at both X chromosomal and autosomal loci, could also be an 

important part of the genetic architecture for sexually dimorphic traits.  Our analyses did not 

include X-by-autosomal epistatic effects and only quantified the phenotypic effects of X 

chromosomal loci with additive and dominance genetic effects.  However, sex-linked 

modification of sex-specific autosomal expression has been observed for size in Portuguese 

Water Dogs (Chase et al. 2005) and may function to reduce intralocus sexual conflict 

(Bonduriansky and Chenoweth 2009).  The sex-specific epistatic effects we detected could also 

be caused by genomic imprinting.  For example, Hager et al. (2008) observed quantitative trait 

loci that were differentially imprinted, based on sex.  Modifier loci that are differentially silenced 

in the two sexes and inherited from two different populations would also show an epistatic effect 

dependent both on sex and population of origin.  However, the genetic model applied in our joint-

scaling tests is unable to disentangle such complex interactions and thus might instead attribute 

such effects to the digenic epistatic effects we did include (axa, axd, and dxd).  Additionally, the 

difference we observed between the sexes in maternal dominance genetic effects (md) could be 

representing a parent-of-origin imprinting effect on dominant alleles.  Parent-of-origin imprinting 

effects lead to differences in the genotypic value of reciprocal heterozygotes (Spencer 2002, 

2009).  Thus, if these effects are not explicitly included in the analyses, we would expect to see a 

difference between the sexes in the dominance genetic effects attributed to the maternal 

population (because we did not include a paternal effect) and not the progeny themselves 

(Spencer 2002, 2009).  If X-by-autosomal epistasis and sex-specific genomic imprinting are 

present in sexually dimorphic traits, this implies that parts of the existing genetic machinery 
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responsible for the basic cascade of events leading to sexual differentiation may have been 

adopted and evolved to facilitate the expression of sexually dimorphic phenotypes (Cline and 

Meyer 1996).  

Although results from both experiments support the conclusion that between-sex 

differences in non-additive effects correlate with the magnitude of sexual dimorphism, we did not 

observe any overlap between the two experiments in the particular genetic effects demonstrating 

this relationship.  A difference between the two experiments is not unexpected and is consistent 

with the hypothesis that polygenic traits that respond to selection often display multiple genetic 

solutions among lines/populations (Falconer 1989; Endler et al. 2001; Garland and Rose 2009).  

Thus, although a similar phenotype is observed (i.e., sexual dimorphism) in all three populations 

used above, this does not imply that allele frequencies with similar effects or even at the same 

loci will change in response to selection or even be present.  We could not directly compare the 

two populations characterized by relatively small body size (RSC and LLC) using the line cross 

analyses conducted here.  However, given that both were crossed to SCI, the differences in the 

genetic effects detected in the two sets of crosses provide indirect evidence that the genetic 

architectures of RSC and LLC differ from each other.  Support for this conclusion can be gleaned 

from a comparison of model averaged parameter estimates within-sexes, but between experiments 

(similar to comparing the MAPEs between sexes, but within-years: see Appendix C4).  Statistical 

comparison of the genetic effects between years suggests that there are subtle differences in the 

genetic architectures estimated from the two experiments, particularly in traits expected to be 

under strong selection (e.g., male genital length and male segment 8 length; Appendix C4 Table

C4.1).  Inter-annual variation in the SCI population might also be causing the difference in our 

results for the two experiments but we do not think this is the case because the results of a pilot 

experiment using RSC and SCI conducted a year earlier yielded similar results to experiment one 
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in the current study (i.e., no year-by-line interaction and similar evidence for X-linkage and or 

maternal effects; see Materials and Methods X-linkage analyses and Appendix C4 Table C4.2).

It is noteworthy that three out of the four genetic differences between the sexes associated 

with the magnitude of sexual dimorphism are attributed to epistasis.  This implies that non-

additive genetic interactions contributing to water strider morphological traits are likely to play a 

central role in past and/or future responses to selection (Hansen in press).  Given that epistasis is 

thought to play a significant role in the evolution of postzygotic reproductive isolation (Orr 1995; 

Orr and Turelli 2001; Johnson 2000; Gavrilets 1993, 2004; Coyne and Orr 2004; Fierst and 

Hansen 2010; Bank et al. 2012), the epistatic associated with sexual dimorphism may also be 

instrumental in the larger processes of sexual selection and sexual conflict that drive speciation in 

the remigis clade of water striders (Lande 1981; Gallant et al. 1993; Gallant and Fairbairn 1996, 

1997; Parker and Partridge 1998; Rice 1998; Dieckmann and Doebeli 1999; Arnqvist et al. 2000).  
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Table 5.1. Counts of the number of individuals or number of cages in each genetic line.  Lines 
can be categorized as: the original parental populations (P), the first filial generation (F1), the 
second filial generation (F2), or a backcross between the first filial generation and the lines 
created directly from the original parental population (B=PxF).  All but the P1 and P2 lines can 
be further subdivided as being a reciprocal (r) or not, which denotes the difference between dam 
and sire identity in the cross of two lines.

Experiment 1 Experiment 2

Female Male Female Male

Line (dam x sire)

No. 
cage 

means
No. 

individs

No. 
cage 

means
No. 

individs

No. 
cage 

means
No. 

individs

No. 
cage 

means
No. 

individs

P1a 19 92 18 101 28 100 31 91

B1a (P1 x F1) 21 73 23 85 30 121 31 94

B1ra (F1 x P1) 15 58 21 81 32 159 31 139

F1 (P1 x P2) 16 92 19 187 25 76 27 86

F2 (F1 x F1) 16 61 14 60 27 113 28 87

F2r (F1r x F1r) 18 77 19 80 33 125 32 103

F1r (P2 x P1) 10 103 7 72 20 65 19 60

B2rb (F1r x P2) 20 88 20 88 30 98 32 93

B2b (P2 x F1r) 14 36 20 53 22 71 25 71

P2 (SCI x SCI) 9 47 12 130 23 69 19 50
a: in experiment one dam and sire were from RSC and in experiment two dam and sire were from 
LLC
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Table 5.2. Results from t-tests to assess the null hypothesis that first generation reciprocals (F1 and F1r) do not differ from one another.  
The ‡ symbol indicates the unadjusted p-value is significant at a critical level after sequential Bonferroni adjustment, where the 
significance threshold for the ith p-value is: αi=0.05/(1+50-i) (Rice 1989).  Trait abbreviations described in the Materials and Methods 
section.

Experiment 1

Female Male

F1                
(P1xP2)

F1r               
(P2xP1) t df p

F1                
(P1xP2)

F1r               
(P2xP1) t df p

Lthorax 6.768 6.751 0.310 23.59 0.62 6.536 6.299 2.897 7.94 0.99
Labd 6.863 6.896 -0.580 23.72 0.28 4.138 4.055 1.604 7.39 0.92
Ltotal 16.127 16.111 0.153 22.51 0.56 15.028 14.625 2.342 7.03 0.97
Wabd 2.906 2.941 -0.955 12.62 0.18 2.489 2.453 1.136 12.19 0.86
Lff 4.422 4.414 0.179 15.89 0.57 4.478 4.494 -0.247 8.07 0.41
Wff 0.568 0.578 -1.242 14.25 0.12 0.722 0.706 1.412 10.55 0.91
Lmf 9.564 9.765 -1.978 13.56 0.034 10.130 9.899 1.531 7.53 0.92
Lhf 9.021 9.092 -0.822 16.05 0.21 9.560 9.298 1.729 7.23 0.94
Lgenital 0.923 0.916 0.386 16.71 0.65 2.875 2.781 2.673 12.60 0.99
Lseg8 0.664 0.662 0.085 15.50 0.53 1.338 1.293 2.915 13.40 0.99
Lpyg -- -- -- -- -- 1.363 1.348 0.734 12.06 0.76

Lseg7mar 1.716 1.733 -0.980 22.22 0.17 1.964 1.869 2.400 7.87 0.98
Wspine 1.564 1.540 0.784 15.66 0.78 1.656 1.675 -0.478 10.88 0.32

Experiment 2

Female Male

F1                
(P1xP2)

F1r               
(P2xP1) t df p

F1                
(P1xP2)

F1r               
(P2xP1) t df p

Lthorax 6.804 6.753 1.137 41.60 0.87 6.536 6.490 0.859 40.59 0.8
Labd 6.865 6.927 -0.921 42.57 0.18 4.180 4.180 -0.014 43.73 0.49
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Ltotal 16.174 16.255 -0.818 40.28 0.21 15.113 15.091 0.195 28.44 0.58
Wabd 2.882 2.914 -1.165 30.80 0.13 2.491 2.524 -1.398 39.07 0.085

Lff 4.422 4.497 -1.886 37.43 0.034 4.528 4.592 -1.570 31.11 0.063
Wff 0.540 0.573 -4.280 41.61 <0.001‡ 0.701 0.721 -2.049 33.57 0.024
Lmf 9.585 9.764 -1.877 40.55 0.034 9.968 10.047 -0.690 29.56 0.25
Lhf 8.948 9.182 -2.296 42.95 0.013 9.475 9.551 -0.701 31.87 0.24
Lgenital 0.929 0.977 -2.295 39.80 0.014 2.801 2.840 -1.026 28.26 0.16
Lseg8 0.643 0.683 -1.893 31.75 0.034 1.249 1.283 -1.705 29.58 0.049
Lpyg -- -- -- -- -- 1.382 1.374 0.585 40.57 0.72

Lseg7mar 1.733 1.725 0.387 43.00 0.65 1.984 1.944 1.737 38.11 0.95
Wspine 1.497 1.559 -2.897 42.93 0.003 1.637 1.655 -0.469 41.56 0.32



151

Table 5.3. The best model, as indicated by the lowest AIC value, out of the candidate model set 
for each trait.  The letters A, D, and E denote the autosomal additive, dominance, and digenic 
epistatic (axa, axd, and dxd) composite genetic effects to distinguish them from other genetic 
effects that contain similar letters.

Experiment 1 Experiment 2

Female Male Female Male

Lthorax ADEXaXd ADEc ADEXaXd ADEc

Labd ADEXac ADEmamdc ADmamdc ADEmamdc

Ltotal ADEXamac AEmamdc AEXaXdmamd ADEmamdc

Wabd ADEXamac ADEc ADEXamac AD

Lff ADEmamdc ADEmamdc ADEmamdc ADEmamdc

Wff ADEXamac ADEmamdc ADEXamac ADE

Lmf ADEmamdc Amamdc ADEXac ADEmamdc

Lhf ADEmamdc AEmamd ADEXamac AEamdmc

Lgenital ADEmamdc AEmamdc ADEXaXd ADEmamdc

Lseg8 AEXaXdmamd ADEmamd ADEXamac ADEmamdc

Lpyg -- ADEmamd -- ADEmamdc

Lseg7mar ADEXamac ADEmamdc ADEmamd ADEmamd

Wspine ADEmamdc AEmamdc ADEXamac ADEmamdc
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Table 5.4. Wald test statistics for the differences between female and male MAPEs in each of the 
two experiments.  Probabilities are indicated with asterisks (***<0.001<**<0.01<*<0.05) and are 
calculated from a chi-squared distribution with one degree of freedom.  The ‡ symbol indicates 
the test is significant at a critical level after sequential Bonferroni adjustment, where the 
significance threshold for the ith p-value is: αi=0.05/(1+192-i) (Rice 1989).

Experiment 1

a d axa axd dxd ma md c
Lthorax 0.0796 0.677 0.000587 0.147 0.889 0.661 0.342 1.26
Labd 0.296 0.0651 1.29 1.06 1.03 0.00153 1.4 0.96
Ltotal 0.0202 0.0804 3.11 4.22* 1.86 0.103 2.71 1.07
Wabd 0.0551 0.149 2.89 2.42 0.496 2.17 0.28 5.68*
Lff 0.193 0.128 0.284 0.293 1.05 0.528 0.000619 0.00388
Wff 0.789 0.505 2.36E-06 0.0329 2.2 1.42 0.81 0.684
Lmf 0.765 2.1 3.03 0.148 0.867 0.655 0.594 0.13
Lhf 0.671 0.817 0.202 0.212 0.926 0.987 0.0769 0.414
Lgenital 0.406 0.569 1.21 2.92 0.519 0.0204 0.000504 1.27
Lseg8 0.000357 2.73 0.438 4.45* 9.99** 0.000854 3.48 0.047
Lseg7mar 0.303 0.0837 0.00648 0.752 0.409 3.78E-05 0.0106 1.46
Wspine 0.003 0.321 0.0729 2.17 0.723 2.47 0.23 2.9

Experiment 2

a d axa axd dxd ma md c
Lthorax 3.13 0.581 0.543 0.0696 0.82 7.71** 0.219 1.08
Labd 1.34 0.832 0.00919 0.00363 3.94* 0.753 5.39* 0.421
Ltotal 1.73 4.09* 0.22 0.00356 7.53** 1.25 0.746 1.09
Wabd 2.67 4.52* 5.16* 2.02 3.72 2.97 0.325 1.15
Lff 0.00223 0.391 0.688 1.35 0.0808 1.46 1.28 1.91
Wff 0.098 1.78 2.76 0.511 1.13 1.13 1.3 5.56*
Lmf 1.15 0.936 1.29 0.00539 0.0333 1.52 2.7 0.0599
Lhf 2.16 0.184 0.626 0.7 0.0465 2.14 1.14 0.0999
Lgenital 0.187 2.31 0.0914 0.162 5.13* 0.134 11.4*** 0.0138
Lseg8 0.577 12.2*** 0.687 0.26 37.8***‡ 0.207 6.44* 0.0169
Lseg7mar 1.61 0.954 2.51 1.57 0.469 3.13 0.16 0.00102
Wspine 0.00492 1.29 0.0747 2.07 1.71 0.421 1.45 1.21
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Table 5.5. The sexual dimorphism index [(larger sex / smaller sex) – 1) for the parent population 
lines in experiment one and two.  Positive values indicate females are the larger sex, whereas a 
negative value indicates that males are the larger sex.

Experiment 1 Experiment 2

SCI RSC SCI LLC

Lthorax 0.0435 0.0246 0.0345 0.0312

Labd 0.6414 0.6234 0.6390 0.6088

Ltotal 0.0709 0.0595 0.0677 0.0593

Wabd 0.2012 0.1528 0.1455 0.1291

Lff 0.0017 -0.0349 -0.0134 -0.0415

Wff -0.2389 -0.3031 -0.2706 -0.2663

Lmf -0.0282 -0.0555 -0.0421 -0.0629

Lhf -0.0478 -0.0674 -0.0470 -0.0807

Lgenital -2.0212 -1.9875 -1.9054 -1.9368

Lseg8 -0.9815 -0.9948 -0.9056 -0.9828

Lseg7mar -0.1344 -0.1288 -0.1444 -0.1532

Wspine -0.0542 -0.1391 -0.0508 -0.1458



154

Table 5.6. Comparison of female and male regressions. The estimates of each composite genetic effect were regressed on the magnitude 
of sexual dimorphism (absolute values of SDI). Asterisks (*) indicate the p-value (***<0.001<**<0.01<*<0.05) for tests of the null 
hypotheses: (i) female and male slopes do not differ from one another, (ii) the difference between female and male intercepts is zero, (iii) 
the slope common to both sexes is zero (Combined) or if the slopes differed between sexes the Female slope is reported (male slope 
obtained by subtracting difference between slopes from the Female estimate), or (iv) the coefficient of determination (R2) from the best 
fitting regression (slopes either different or combined for the two sexes) equals zero. Parentheses indicate 1 standard error.

Experiment 1

Difference between intercepts Slope R2

Combined Female Female - Male
a -0.0319 (0.0330) -0.0703 (0.0352) 0.231
d -0.106 (0.262) 0.160 (0.205) 0.0339
axa -- -- 0.439 (0.279) -0.774 (0.312)* 0.301
axd -- -- 0.132 (0.150) -0.582 (0.176)** 0.701***
dxd -0.0641 (0.245978) -0.690 (0.260)* 0.255*

ma 0.0284 (0.0125)* 0.0393 (0.0211) 0.373**

md -0.0231 (0.0172) 1.69E-08 (7.30E-08) 0.0811
c 0.0090 (0.0136) 0.000978 (0.0146) 0.0213

Experiment 2

Difference between intercepts Slope R2

Combined Female Female - Male
a -0.0550 (0.030) -0.0194 (0.03673) 0.152
d 0.231 (0.2105) 1.48 (0.462)** 0.381**
axa -0.0501 (0.117) 0.0866 (0.166) 0.0237
axd 0.0484 (0.0744) -0.147 (0.095) 0.13
dxd -- -- -0.369 (0.488) -1.54 (0.714)* 0.424*

ma 0.00837 (0.00727) -0.0136 (0.0123) 0.0904

md -- -- -1.47E-08 (2.81E-08) -0.160 (0.0539)** 0.449**
c -0.0172 (0.0135) -0.00236 (0.00352) 0.0931
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Figure 5.1. Observed line means (±2SE) of somatic traits for the population cross in experiment 
one (left column) and experiment two (right column).  Each plot depicts female (open circles) and 
male (filled squares) line means.  Line means are arranged from left to right along the x-axis to 
reflect the approximate proportion of P2 (SCI x SCI) genes each line contains.  The dashed line 
indicates the additive expectation.
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Figure 5.2. Observed line means (±2SE) of leg traits for the population cross in experiment one 
(left column) and experiment two (right column).  Arrangement, symbols, and lines are the same 
as in figure 5.1.  
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Figure 5.3. Observed line means (±2SE) of genital traits for the population cross in experiment 
one (left column) and experiment two (right column).  Arrangement, symbols, and lines are the 
same as in figure 5.1.  
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Figure 5.4. Differences between the female and male model averaged parameter estimates 
(MAPEs) that are significantly greater than zero (Wald chi-squared tests, see main text).  MAPEs 
are divided by the difference between the two parent population lines (P2 minus P1).  Equal 
effects in the two sexes fall on the black, dashed line running diagonally through each plot.  The 
horizontal and vertical grey dashed lines indicate where female and male MAPEs, respectively, 
do not contribute to the observed difference between the parental lines in that particular sex.  
Letters next to points indicate the composite genetic effect that each point represents.  Legends in 
the panels found in the left column reflect symbols used for a particular subset of traits in both 
experiment one (left column) and experiment two (right column).  Note, no MAPEs differed 
significantly between the sexes for leg traits in experiment one.
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Figure 5.5. Regressions of composite genetic effect estimates on the magnitude of sexual 
dimorphism across traits.  Points indicate female (open circles) or male (closed, black circles) 
model averaged parameter estimates for a given absolute value of the sexual dimorphism index 
for each trait.  Regression lines (solid) are accompanied by their 95% confidence limits (dashed 
lines) for females (grey) and males (black) in either experiment one (left column) or experiment 
two (right column).
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CONCLUSION TO THE DISSERTATION

As a consequence of their disparate roles in reproduction, the two sexes often have markedly 

different phenotypes.  However, in spite of the prevalence of sexual dimorphism, we have little 

knowledge of the genetic architecture underlying these differences.  In my first chapter I have 

shown that ignoring these differences at the genetic level can lead to biased estimates of additive 

genetic variances.  Similarly, in my third chapter I have shown that bias arises in estimates of 

additive genetic variance when additive genetic variance located on the sex chromosomes is 

ignored.  These biases can greatly affect conclusions regarding many evolutionary processes such 

as responses to selection and genetic drift.  Of particular note is the bias that is seen in estimates 

of between-sex additive genetic correlations when sex-linkage is left out of an analysis.  Often a 

negative between-sex additive genetic correlation is sought as an indicator of genetic sexual 

conflict.  My results suggest that analyses that do not explicitly account for sex-linked additive 

genetic variance could be making erroneous conclusions regarding the presence of genetic sexual 

conflict.  For example, the interesting dynamic between the sex chromosomal versus autosomal 

location of sexually antagonistic variation will be completely missed and consequently many 

between-sex additive genetic correlations will be biased upwards.

In my second and fourth chapters I expand the available methods for estimating genetic 

variance contributing to phenotypic variation.  Specifically, the development of the non-additive 

and sex-linked relatedness matrices as options in the quantitative geneticist’s toolkit will allow 

sex-specific non–additive variance and/or sex-linked additive genetic variance to be quantified.  

With estimates in hand, quantitative geneticists will be able to evaluate the roles these 

components of the genetic architecture play in the evolution of sexual dimorphism.  Finally, 

evidence from the population crosses conducted in Aquarius remigis contributes empirical 
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evidence for the first time supporting the role of sex-specific non-additive genetic effects in the 

evolution of sexual dimorphism.

There are a few obvious avenues of future research following from the results obtained in 

the analytical, simulation, and empirical studies presented in my dissertation along with the 

development of quantitative genetic methodologies.  Specifically, it remains to be tested whether 

or not sex-specific non-additive genetic variances are key components of phenotypic variation in 

sexually dimorphic traits.  Further, only a handful of studies have quantified the amount of sex-

linked additive genetic variance contributing to sexually dimorphic trait variation.  Particularly, 

investigation into the difference between autosomal and sex-linked between-sex additive genetic 

correlations deserves much more attention.  Careful separation of these two quantities in a range 

of populations, each over a range of traits varying in sexual dimorphism, is necessary to fully 

understand the extent to which shared additive genetic variation between the sexes constrains the 

evolution of sexual dimorphism.
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APPENDIX A: Supporting Information for Chapter 2

A1 Relatedness matrices in the animal model

A brief description of a linear mixed model will be formulated below (following Lynch & 

Walsh (1998) Genetics and Analysis of Quantitative Traits) with an aim toward demonstrating 

how the inverse of a relatedness matrix is incorporated into an animal model.  Beginning with a 

univariate model of Gaussian observations, where there is only one observation per individual 

and one random effect (in this case the additive genetic effect), the model can be specified as:

y = Xβ + Zu + e (A1.1)

where y is a n x 1 vector of phenotypes, β a p x 1 vector of fixed effects, u a n x 1 vector of 

random effects (breeding values here), e is a n x 1 vector of residual deviations, and X and Z are 

n x p and n x q incidence matrices relating the fixed and random effects, respectively, to each 

observation.  The expected means for the components in this model are E[u] = E[e] = 0 and 

therefore E[y] = Xβ.  The variance of y is var(y) = V = ZGZT + R, where G and R are the q x q

and n x n variance-covariance matrices for the additive and residual effects, respectively.  Since 

the covariance among additive effects is the same as the additive genetic covariance between 

relatives, G = σ2
AA, where A is the additive genetic relationships matrix.  The residual deviations 

are assumed uncorrelated, therefore R = σ2
EI, where I is an identity matrix (n x n with 1s along 

the diagonal). 

Finding solutions for the fixed and random effects (β and u) and variance components 

(σ2
A and σ2

E) in s.1 is thoroughly explained elsewhere (e.g., Lynch & Walsh, 1998; Sorensen & 

Gianola 2002), so I will spare the details here.  The relevant point is that the following mixed 

model equations for the animal model: 
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where λ = σ2
E/σ2

A, μ is the overall mean, and 1 is a n x 1 vector of 1s, require A-1 to obtain the 

solution (utilizing either Likelihood or Bayesian methods to solve the equations). 

The same can be shown for the case of more than one random effect.  Now the univariate 

model is specified:

y = Xβ + Z1u1 + Z2u2 + e (A1.3)

such that Z1u1 and G1 are the same as Zu and G in equation s.1.  Z2 is the incidence matrix 

relating the random effects in u2, which in this example will represent dominance genetic effects.  

Here, the covariance matrix G2 = σ2
DD, where D represents the dominance genetic relatedness 

matrix, has the inverse G2
-1 = σ-2

DD-1.  The mixed model equations, incorporating the estimation 

of another random effect (e.g., dominance genetic effects in this example) are:
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where λA is λ above and λD =  σ2
E/σ2

D.  Finding the solutions requires A-1 and D-1.  Extending to 

the multivariate case, it is easy to see how the mixed model equations for a multivariate model 

would rely on A-1 and D-1, but I will refer the interested reader to Lynch & Walsh (1998) for 

further details.
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In the above general linear model (eqn. s.1), Gaussian observations (y) are assumed to be 

multivariate normal such that y ~ MVN(Xβ, V).  For the purpose of demonstrating how the 

relationship matrices are incorporated into the animal model, non-Gaussian data are treated in a 

similar way for a generalized linear model.  However, the observations are a function of latent 

variables, which correspond to the terms on the right hand side of equation s.1, which are related 

through an appropriate predictor function.  Thus, the latent variables represented by l (lower-case 

“L” and not a “one”) can be expressed in terms of fixed and random effects as:

l = Xβ + Zu + e (A1.5) 

Thus, for animal models of non-Gaussian response variables, solving equation A1.5 necessitates 

the same mixed model equations as in equation A1.2. 
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A2 nadiv

The inverse of relatedness matrices for dominance and epistatic genetic effects can be created 

using makeD(), makeDsim(), makeAA(), and/or makeDomEpi().  Using these functions 

in R and manipulating their output is extremely similar from one function to the next, so only one 

[i.e., makeD()] is provided in the examples below.  For more information on the other functions, 

see the help documentation accompanying the nadiv package.  The warcolak dataset used 

below is a simulated, three-generation design without inbreeding (see the help pages for this 

dataset in nadiv and the breeding design described in Fairbairn, D.J. & Roff, D.A. (2006) 

Heredity, 97:319-328).  Because there is absolutely no inbreeding in this population, I do not 

consider it when specifying the animal model.  However, when applying these models to other 

populations, which may have inbreeding, it is necessary to fit the inbreeding coefficients as a 

covariate in the model.  An explanation of this can be found in Walsh and Lynch’s draft of 

Chapter 15 for their new book (Volume 2: Evolution and Selection of Quantitative Traits. 

http://nitro.biosci.arizona.edu/zbook/NewVolume_2/newvol2.html)  

Below, examples are used to indicate the steps necessary to estimate additive and 

dominance genetic variance using MCMCglmm, asreml, ASReml (standalone), and WOMBAT.  

More complete tutorials covering the general use of each program can be found in the 

supplementary material for Wilson et al. (2010) Journal of Animal Ecology, 79:13-26.  What is 

shown below is meant to demonstrate the use of functions in nadiv, and not how to analyze data 

using animal models.  When applying similar models to other datasets, the practitioner should 

ensure that the models are properly adapted to suit the demands of the analysis and system being 

modeled. 
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Parallel processing

A note about ways to improve the speed of nadiv functions.  Many of the functions 

have the built in option to utilize parallel processing across a single computer when carrying out 

various computations.  This implements functions from the multicore package in R.  

However, multicore is not useable under all operating systems – it seems to be supported for 

Linux and Mac but it is unclear how well (if at all) this package will work under Windows – and 

so the defaults in nadiv have been set to not use multiple processors.  However, enabling this 

only requires setting parallel = TRUE in the arguments for functions that have this 

capability.  See the help documentation for each function for further details.

Some considerations are necessary to ensure the greatest amount of time saving possible.  

Due to overhead incurred when setting up the multiple processors to run in parallel, it might 

actually be slower to use parallelization if the function is to be used on a small dataset.  

Additionally, RAM will need to be allocated for each processor engaged in executing the R 

functions.  For some very large datasets this might necessitate using less than the maximum 

number of processors (or else the computer will run out of RAM and either quit with an error or 

use “swap” space – e.g. the much slower hard drive).  Specifying the number of parallel R 

processes to create can be achieved by setting a numerical value for the ncores argument.  By 

default, this argument is set to use all processors available.  The ASReml-R Tutorial below 

contains some comments about instances when to use parallel processing as well as some 

potential trade-offs to its use in nadiv.  
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A3 MCMCglmm Tutorial

> library(nadiv)
> library(MCMCglmm)

> #Additive and dominance example

> priorADE <- list(G = list(G1 = list(V =1,  nu = 0.002),
+  G2 = list(V = 1, nu = 0.002)),
+  R = list(V = 1, nu = 0.002))

> Ainv <- inverseA(warcolak[, 1:3])$Ainv
> Dinv <- makeD(warcolak[, 1:3])$Dinv
> warcolak$IDD <- warcolak$ID

> warcolak.MCMC <- MCMCglmm(trait1 ~ 1, random = ~ID + IDD, 
+  ginverse = list(ID = Ainv, IDD = Dinv), data = warcolak, 
+  prior = priorADE, 
+  nitt = 105000, thin = 100, burnin = 5000, 
+  verbose = TRUE)

The above example is for the simple purpose of demonstrating the proper use of makeD() and 

how to include it in the ginverse list of a call to MCMCglmm().  Including any of the 

epistatic genetic effects into the model is very similar, both in the use of the function to obtain the 

inverse of the relationship matrix and the inclusion into a MCMCglmm model.  However, for each 

random effect that depends upon the individual identity (e.g., ID), a separate identifying column 

might be necessary (e.g., for above, “IDD” is a copy of “ID” for referencing the dominance 

effect).  Including an extra copy of the ID column is also used in the ASReml examples below.   

Additionally, an accompanying entry in the ginverse list, linking the name of the random 

effect in the model to the correct generalized inverse, is necessary. 

We can see how well the MCMCglmm model was able to separate the three variance 

estimates, by plotting the posterior distributions:

> plot(warcolak.MCMC$VCV)
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In addition to inspecting the autocorrelation visually (from the traces above), we can check for 

autocorrelation a bit more quantitatively with:

> autocorr(warcolak.MCMC$VCV)
, , ID

                   ID         IDD       units
Lag 0     1.000000000 -0.26494432 -0.07278217
Lag 100  -0.000012508 -0.10539016  0.09549293
Lag 500   0.036393095 -0.04985777  0.04914678
Lag 1000 -0.066606835 -0.04590237  0.05578282
Lag 5000 -0.079375908  0.05365031 -0.02371619

, , IDD

                  ID         IDD       units
Lag 0    -0.26494432  1.00000000 -0.89076965
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Lag 100  -0.08938836  0.57207016 -0.54355028
Lag 500  -0.01558564  0.11492239 -0.10663915
Lag 1000  0.02792617 -0.01921861  0.02510860
Lag 5000 -0.02093646 -0.02934648  0.04967262

, , units

                   ID          IDD       units
Lag 0    -0.072782169 -0.890769649  1.00000000
Lag 100   0.094689577 -0.537598269  0.51085097
Lag 500  -0.002208612 -0.088331598  0.07303680
Lag 1000 -0.011661740  0.026924969 -0.03826952
Lag 5000  0.049615606  0.009750489 -0.04206244 

There appears to be some autocorrelation, particularly between the dominance and residual 

variances (i.e., “IDD” and “units”), and it would be best to re-run the model after altering the 

number of iterations (i.e., nitt), burnin (i.e., burnin), and sampling interval (i.e., thin) 

parameters in MCMCglmm().  

We can also estimate the sampling (co)variance between two terms, for example the 

additive and dominance variances (“ID” and “IDD”).  To do this along with an accompanying 

plot of the Model II regression:

> library(lmodel2)
> ID.est <- warcolak.MCMC$VCV[, 
"ID"][1:dim(warcolak.MCMC$VCV)[1]] 
> IDD.est <- warcolak.MCMC$VCV[, 
"IDD"][1:dim(warcolak.MCMC$VCV)[1]]
> mareg <- lmodel2(ID.est~IDD.est)
> x11(w = 8, h = 8)
> plot(mareg, method = "MA", xlim = c(0,0.7), ylim = c(0,0.7),
+ xlab = "IDD estimates", ylab = "ID estimates", 
+ main = paste("Sampling correlation: ", round(mareg$r, 3), 
sep =""), 
+ sub = "Line represents the major axis regression")

yields the following graph.
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Further, we can obtain the modes of each variance component’s posterior distribution along with 

the 95% Highest Posterior Density (HPD) intervals:

> posterior.mode(warcolak.MCMC$VCV)
+        ID       IDD     units 
+ 0.3585311 0.2488164 0.3994836

> summary(warcolak.MCMC)$Gcovariances
+     post.mean  l-95% CI  u-95% CI  eff.samp
+ ID  0.3596518 0.3022913 0.4210762 1000.0000
+ IDD 0.2475114 0.1494159 0.3520785  242.4259

> summary(warcolak.MCMC)$Rcovariances
+       post.mean  l-95% CI  u-95% CI eff.samp
+ units 0.3747735 0.2859493 0.4696829 287.8212
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Finally, another way to assess the significance of the dominance term is to compare the 

Deviance Information Criterion (DIC) between the full model and one where the dominance is 

not included.

> #Additive only model
> priorAE <- list(G = list(G1 = list(V = 1,  nu = 0.002)), 
+   R = list(V = 1,  nu = 0.002))

> warcolak.MCMC2 <- MCMCglmm(trait1 ~ 1, random = ~ID, 
+   ginverse = list(ID = Ainv), data = warcolak, 
+   prior = priorAE, 
+   nitt = 102000, thin = 100, burnin = 2000, 
+   verbose = TRUE)

Show the DICs for the full additive and dominance model and then the additive only model:

> warcolak.MCMC$DIC
+ [1] 12878.99
> warcolak.MCMC2$DIC
+ [1] 14058.49
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A4 ASReml-R Tutorial

> library(nadiv)
> library(asreml)

> ginvA <- asreml.Ainverse(warcolak[ , c(1,3,2)])$ginv

Note, the above ASReml function wants the columns for the pedigree ordered “ID”, “Sire”, 

“Dam” – hence “warcolak[, c(1,3,2)]”.  This is a different order than both nadiv and 

MCMCglmm use (“ID”, “Dam”, “Sire”).

> ginvD <- makeD(warcolak[ ,1:3])$listDinv

We can compare the creation of the dominance relatedness matrix and its inverse for both options 

to the parallel argument.  First, the time for the non-parallel operation:

> system.time(Dout <- makeD(warcolak[, 1:3], parallel = FALSE))
starting to make D....done 
   user  system elapsed 
  5.610   2.340   7.959

The “elapsed” column indicates the total time taken to execute the command.  Now the time for 

the parallel operation:

> library(multicore)
> system.time(Dout2 <- makeD(warcolak[,1:3], parallel = TRUE, 
ncores = 8)) 
starting to make D....done 
   user  system elapsed 
  5.780   2.910   7.968

On a Dell laptop with an Intel® Core™ i7-2820QM CPU (2.3Ghz – 8 cores available), 8GiB of 

system memory, and using a Linux 64-bit operation system, we see there is no real advantage to 

utilizing the parallel option.  However, the warcolak pedigree is quite simple and the 
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dominance relatedness matrix rather sparse (as well as the additive relationship matrix).  

Therefore, on a larger or more related pedigree the parallel option might end up saving much 

more time.  However, caution should be taken when using this feature for very large pedigrees 

with many related individuals.  The amount of RAM used in the above parallel version of 

makeD() was a few times greater that of the non-parallel execution.  If the memory 

requirements are high, the number of processors able to be used may be limited by the total RAM 

available and not the total number of processors of the computer.

> warcolak$IDD <- warcolak$ID

> warcolak.asr <- asreml(trait1 ~ 1, 
+ random = ~ ped(ID) + giv(IDD), 
+ ginverse = list(ID = ginvA, IDD = ginvD), 
+ data = warcolak) 

asreml(): 3.0.1 Library: 3.01gl IA32  Run: Mon Feb 13 12:21:38 
2012

     LogLik         S2      DF
  -2457.8362      0.7690  5399  12:21:39
  -2412.4444      0.6773  5399  12:21:39
  -2368.0852      0.5622  5399  12:21:39
  -2340.5521      0.4413  5399  12:21:39
  -2336.0457      0.3872  5399  12:21:39
  -2335.8565      0.3735  5399  12:21:39
  -2335.8560      0.3726  5399  12:21:39
  -2335.8560      0.3726  5399  12:21:39

Finished on: Mon Feb 13 12:21:39 2012
LogLikelihood Converged 

> summary(warcolak.asr)$varcomp
                 gamma component  std.error   z.ratio constraint
ped(ID)!ped  0.9601333 0.3577059 0.03155830 11.334763   Positive
giv(IDD).giv 0.6717242 0.2502566 0.05324035  4.700507   Positive
R!variance  1.0000000 0.3725586 0.04904087  7.596901   Positive
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We can see that the variance component estimates are very similar to what MCMCglmm reported 

as the posterior distribution modes.  If we wanted to examine the sampling covariances among the 

variance components, we could inspect the inverse of the Average Information matrix:

> aiFun(model = warcolak.asr, Dimnames = c("Va", "Vd", "Ve"), 
inverse = TRUE)    
         Va       Vd       Ve
Va  0.02644  0.72012 -0.85731
Vd  0.02642  0.05090 -0.95985
Ve -0.00684 -0.01062  0.00241

where the sampling correlations are printed above the diagonal and the covariances are below the 

diagonal.  The sampling variances (along the diagonal) could be used to obtain approximate 95% 

Confidence Intervals (CIs).

> aiCI(warcolak.asr, Dimnames = c("Va", "Vd", "Ve"))

         UCL  estimate       LCL
Va 0.4196273 0.3577059 0.2957845
Vd 0.3546491 0.2502566 0.1458642
Ve 0.4687767 0.3725586 0.2763405

However, this method makes an assumption about the normality of the likelihood surface which 

often does not hold (Meyer, K. (2008) Heredity, 101:212-221.).   A better way to construct CIs 

would be to use the log profile likelihood for each component.  Here again, I will compare the 

proLik function with and without parallel processing enabled.  First, without:

> system.time(profileA <- proLik(full.model = warcolak.asr,
+    component = "ped(ID)!ped", negative = FALSE, nsample.units = 
4,
+    nse = 3.5))

   user  system elapsed 
29.590   1.840  31.467 
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And now setting parallel = TRUE:

> system.time(profileA2 <- proLik(full.model = warcolak.asr,
+    component = "ped(ID)!ped", negative = FALSE, nsample.units = 
4,
+    nse = 3.5, parallel = TRUE, ncores = 8))

   user  system elapsed 
52.410  13.640   9.784

Here, utilizing the parallel processing saves a lot of time, even for this very simple model.  It is 

easy to see how this option could create huge time savings for animal models which take over a 

minute to converge for one set of parameter values.  The additive variance estimate’s CI limits 

are:

> profileA$UCL
[1] 0.4610137
> profileA$LCL
[1] 0.2862408

And the dominance variance profile likelihood and CI limits are:

> profileD <- proLik(full.model = warcolak.asr,
+    component = "giv(IDD).giv", negative = FALSE,
+    nsample.units = 4, nse = 3, parallel = TRUE)

> profileD$UCL
[1] 0.398427
> profileD$LCL
[1] 0.1525705

Note the discrepancy, particularly in the upper confidence limit (UCL), when comparing the 

confidence intervals estimated from the profile likelihoods to those derived from the Average 

Information matrix (i.e., aiCI() above).  When plotted,
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> par(mfrow = c(2,1))
>   plot.proLik(profileA, xlim = c(0, 1)) 
>   plot.proLik(profileD, xlim = c(0, 1))

these profile likelihoods yield a graph similar to figure 2.1 in the main text.  Here we can see the 

asymmetry of the profile likelihood which the confidence intervals estimated from the Average 

Information matrix do not reflect.

The following illustrates the simulation approach to estimating the dominance relatedness 

matrix (Ovaskainen et al. (2008) Proceedings of the Royal Society B, 275: 669-678.):

> system.time(Dsim <- makeDsim(warcolak[, 1:3], N = 10000,
+    invertD = TRUE, calcSE = TRUE))
> ginvDsim <- Dsim$listDsiminv
starting to make D....done 
making Dsim ....done 
    user   system  elapsed 
3142.580    5.370 3151.608

We can use this D-inverse in the ginverse argument of the asreml() call exactly the same 

as demonstrated above when using makeD().

Finally, additional random effects representing non-additive genetic variances can be 

added to multivariate animal models in the same way as any other random effect.  The same 

procedures as above can be used to construct the necessary dominance (or epistatic) relatedness 

matrix inverse.  As in any multivariate animal model, additional specifications are necessary in 

the model to indicate the G and R structure, as shown here for a bivariate model:

> warcolak.asr2 <- asreml(fixed = cbind(trait1, trait2) ~ trait,
random = ~ us(trait):ped(ID) + us(trait):giv(IDD),
ginverse = list(ID = ginvA, IDD = ginvD),
rcov = ~ units:us(trait),
data = warcolak)
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> summary(warcolak.asr2)$varcomp
                                         gamma   component  std.error     
z.ratio  constraint
trait:ped(ID)!trait.trait1:trait1   0.35780564  0.35780564 0.03155212  
11.3401461    Positive
trait:ped(ID)!trait.trait2:trait1  -0.01214159 -0.01214159 0.02328397  
-0.5214568    Positive
trait:ped(ID)!trait.trait2:trait2   0.42928030  0.42928030 0.03431675  
12.5093514    Positive
trait:giv(IDD)!trait.trait1:trait1  0.24926719  0.24926719 0.053206061 
4.6849396     Positive
trait:giv(IDD)!trait.trait2:trait1  0.03381735  0.03381735 0.037714452 
0.8966683     Positive
trait:giv(IDD)!trait.trait2:trait2  0.27888802  0.27888802 0.053445162 
5.2182092    Positive
R!variance                          1.00000000  1.00000000         NA         
NA        Fixed
R!trait.trait1:trait1               0.37340260  0.37340260 0.04902295  
7.6168942     Positive
R!trait.trait2:trait1              -0.01894427 -0.01894427 0.03486782  
-0.5433166    Positive
R!trait.trait2:trait2               0.31388399  0.31388399 0.04958689  
6.3299792     Positive
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A5 ASReml (standalone) Tutorial

In R, run the following commands to obtain a text file with the generalized inverse of D:

> library(nadiv)
> ginvD <- makeD(warcolak[ ,1:3])$listDinv
> write.table(ginvD, “ASwarcolak.giv”, col.names = FALSE, 

row.names = FALSE)

Now, make sure the files “ASwarcolak.dat” and “ASwarcolak.ped” from the Supporting 

Information have been downloaded.  In the ASReml program, create and run the following 

“warcolak.as” file and run the job:

Univariate Additive and Dominance example
ID !P
Sire         
Dam          
IDD          
sex 2       
trait1
trait2

ASwarcolak.ped
ASwarcolak.giv
ASwarcolak.dat !SCORE
trait1 ~ mu !r ID giv(IDD,1)

Note: adding the !SCORE qualifier writes the Average Information matrix to the file 

“ASwarcolak.AIM”, in this example (generically named “basename.AIM”).  This can then be 

used to inspect the sampling (co) variances of the random effects in R as:

> asreml.out <- scan("<your-path-here>/ASwarcolak.aim")
> asreml.out
[1]   289.2033   272.2135   505.9344  2023.8973  3007.5787 
19447.7270
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> aiFun(AI.vec = asreml.out, inverse = FALSE, Dimnames = c("Va", 
"Vd", "Ve"))
         Va       Vd       Ve
Va  0.02643  0.72011 -0.85730
Vd  0.02641  0.05089 -0.95985
Ve -0.00684 -0.01062  0.00240

Alternatively, and perhaps more simply, the “.vvp” file produces the same results (e.g., 

“ASwarcolak.vvp”) and can be viewed in the ASReml program.
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A6 WOMBAT Tutorial

In R, run the following commands to obtain a text file with the generalized inverse of D:

> library(nadiv)
> Dout <- makeD(warcolak[,1:3])
> Dinv <- Dout$listDinv[, c(2,1,3)] 

The line directly above is because WOMBAT wants the generalized inverse columns ordered 

“column”, “row”, “inverse”.  Now save this generalized inverse to the hard drive:

> write.table(Dinv, "dominance.gin", col.names = FALSE, 
row.names = FALSE)

and obtain the log of the determinant of D:

> Dout$logDet
[1] -27.30874

The next step is to copy the log of the determinant (-27.30874) and paste it into the file 

“dominance.gin” as the first line.  The first 5 lines of “dominance.gin” should look like:

-27.30874
1 1 1
2 2 1
3 3 1
4 4 1

Place the generalized inverse of D (“dominance.gin”) in the same directory as the parameter file.  

From the Supporting Information, download “WOMBATdata.d” and “WOMBATped.d” and 

place these in the directory one above from where the “dominance.gin” and parameter file are 

located.  Next construct the following as a parameter file (“wombat.par”) and run it from the 

command line (i.e., type: wombat wombat.par):
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COM Univariate analysis of simulated warcolak dataset in nadiv
PED ../WOMBATped.d
DAT ../WOMBATdata.d
animal

  sire 
  dam
  dominance 5400
  record
END DAT 
ANALYSIS UNI
MODEL
  RAN animal NRM
  RAN dominance GIN
  TRA record
END MODEL
VAR animal 1
0.1
VAR dominance 1
0.1
VAR error 1
0.1

Note, for simplification, the file “WOMBATdata.d” does not contain the columns “sex” or trait1” 

from the warcolak dataset.  Also, the Average Information matrix can be obtained from the 

“AvInfoCovs” output file.  Note two points, however.  First, these are the elements of the 

Average Information matrix and not its inverse (which the latter is necessary for obtaining the 

sampling (co) variances).  This can be handled by setting the aiFun() argument inverse

equal to FALSE.  Secondly, this Average Information matrix is for the parameters estimated by 

WOMBAT, which is generally the leading columns of the Cholesky factors of the covariance 

matrix estimated and not the parameters on their original scale (as is the case from ASReml).  

These, however, could be read into R.  For example:

> wombat.ai <- read.table(“AvInfoCovs”, skip = TRUE)
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where the argument, skip = TRUE, is necessary because the file “AvInfoCovs” contains the 

log likelihood, of the iteration generating the Average Information matrix, as the first line.
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APPENDIX B: Supporting Information for Chapter 3

B1 Simulation and analysis details and design matrix for observed variance components 

model

Simulation details

The autosomal additive, sex-linked additive, and residual effects were each random draws from 

multivariate normal distributions, where a is a random draw from the distribution N(0, Ga⊗A), s

is a random draw from the distribution N(0, Gs⊗S), and e is a random draw from the distribution 

N(0, R), following methods described by Van Vleck (1994).  Here, ⊗ denotes the direct product 

between two matrices and
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represent the additive genetic covariance matrices for autosomal and sex-linked effects, 

respectively.  The matrices A and S are the autosomal and sex-linked additive genetic relationship 

matrices which are constructed based upon the algorithms of Meuwissen and Luo (1992. 

Computing inbreeding coefficients in large populations. Genet. Sel. Evol. 24:305-313) and 

Fernando and Grossman (1990), respectively, for each pedigree type (see Pedigrees considered in 

main text) using the nadiv (v2.11; Wolak 2012) package in R (R Development Core Team, 

2012).  The homogametic and heterogametic residual covariance matrix is:  
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Thus, the residual effects have equal variances for each sex (σ2
e-hom=σ2

e-het), but are completely 

uncorrelated (σe-hom,het=0)

Analysis details

The naïve animal model implemented is specified as:
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and the informed animal model as:
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Here X, Za, and Zs, are design matrices relating fixed (X) or random (Za, Zs) effects to the 

appropriate record in yhom or yhet.  The vectors β, a, s, and e contain the sex-specific fixed effects, 

autosomal additive genetic effects, sex-linked additive genetic effects, and residual effects, 

respectively.  The random effects a, s, and e are assumed to be multivariate normally distributed 
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following: a ~ N(0, Ga⊗A), s ~ N(0, Gs⊗S), e ~ N(0, R).  Again, A and S are the autosomal and 

sex-linked relationship matrices and Ga, Gs, and R take the same form as in equations B1.1-B1.3, 

respectively.  However, the (co)variances in Ga, Gs, and R are now the REML estimates obtained 

when solving the mixed model equations of the animal model (Patterson and Thompson. 1971. 

Recovery of inter-block information when block sizes are unequal. Biometrika. 58:545-554; 

Lynch and Walsh 1998).  
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Design matrix

Adapted from Chenoweth et al. 2008.  See main text for symbol definitions.

Observed 
components Genetic or causal components

σ2
a-hom σ2

a-het σ2
s-hom σ2

s-het σ2
e-hom σ2

e-het σa-hom,het σs-hom,het σe-hom,het

Homogametic Sex
sire variance 0.25 0 0.5 0 0 0 0 0 0
dam variance 0.25 0 0.25 0 0 0 0 0 0
within-family 
variance 0.5 0 0.25 0 1 0 0 0 0

Heterogametic Sex
sire variance 0 0.25 0 0 0 0 0 0 0
dam variance 0 0.25 0 0.5 0 0 0 0 0
within-family 
variance 0 0.5 0 0.5 0 1 0 0 0

Between-sex
sire covariance 0 0 0 0 0 0 0.25 0 0
dam covariance 0 0 0 0 0 0 0.25 0.5 0
within-family 
covariance 0 0 0 0 0 0 0.5 0.5 1
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B2 Biases in sex-linked and residual variance estimates from “informed” models

F
igure B2.1. Analyses of the HS pedigree when implementing “informed” observed variance 
components models (circles).  The panels depict average percent bias in estimates of sex-linked 
(top row) additive and residual (bottom row) variances in the homogametic sex (open, red 
symbols) and the heterogametic sex (closed, blue symbols) as a function of the proportion of 
phenotypic variance comprised of sex-linked variance (hs

2) and when the sex-linked between-sex 
additive genetic correlation is approximately (A) 0.71, (B) 0, and (C) -0.71.  In all panels, bars 
indicate the extent of the 95% quantile of estimates.  Note for the smallest value of hs

2, the sex-
linked additive genetic variances were not estimable.  Also, the error bars for the three smallest 
values of hs

2 depicted extend beyond the range of the plotting region.
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Figure B2.2. Analyses of the HS pedigree when implementing “informed” animal models 
(boxes).  Panel arrangement, symbols, and lines as in figure B2.1.  Note in panels (B) and (C) 
models estimating sex-linked variance for the homogametic sex converged on the boundary of the 
parameter space (i.e., zero).  Specifying different starting values improved the model behavior, 
but those results are not shown (see text for a discussion).  
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Figure B2.3. Analyses of the DFC pedigree when implementing “informed” animal models 
(boxes).  Panel arrangement, symbols, and lines as in figure B2.1.  
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B3 Biases in residual variance estimates from “naïve” models

The HS pedigree analyzed with a naïve observed variance component model attributes sex-linked 

variance in both sexes to the autosomal additive variance estimate.  However, this model tends to 

attribute too much variance to the autosomal additive variance in the homogametic sex, resulting 

in an underestimate of the residual variance at higher levels of simulated sex-linked variance (hs
2) 

(Figure B3.1A-C).  A similar result is observed for the HS pedigree analyzed with a naïve animal 

model, however the tendency to over-assign variance to the autosomal additive variance 

component occurs in both sexes when sex-linked variance (hs
2) is higher (Figure B3.1D-F).  The 

residual variance is instead biased upward when the DFC pedigree is analyzed with a naïve 

animal model (Figure B3.1G-I).   
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Figure B3.1 Analyses of: the HS pedigree when implementing “naïve” observed variance 
components models (circles; A-C) and “naïve” animal models (squares; D-F), and the DFC 
pedigree when implementing “naïve” animal models (boxes, G-I).  The panels depict average 
percent bias in residual variance estimates in the homogametic sex (open, red symbols) and the 
heterogametic sex (closed, blue symbols) as a function of the proportion of phenotypic variance 
comprised of sex-linked variance (hs

2) and when the sex-linked between-sex additive genetic 
correlation is approximately 0.71 (first column), 0 (second column), and -0.71 (third column).  In 
all panels, bars indicate the extent of the 95% quantile of estimates.
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B4 Half-sib analyses with parent phenotypes
Below is the design matrix used in observed variance components analyses of the HS data with offspring-parent covariances included.  

Adapted from Chenoweth et al. (2008) and Mezey and Houle (2005).  Below, dams/daughters were assumed to be the homogametic sex 

and sires/sons the heterogametic sex.

Observed 
components Genetic or causal components

σ2
a-hom σ2

a-het σ2
s-hom σ2

s-het σ2
e-hom σ2

e-het σa-hom,het σs-hom,het σe-hom,het

Dam on mid-
daughter 
covariance 0.5 0 0.5 0 0 0 0 0 0
Sire on mid-son 
covariance 0 0.5 0 0 0 0 0 0 0
Homogametic Sex

sire variance 0.25 0 0.5 0 0 0 0 0 0
dam variance 0.25 0 0.25 0 0 0 0 0 0
within-family 
variance 0.5 0 0.25 0 1 0 0 0 0

Heterogametic Sex
sire variance 0 0.25 0 0 0 0 0 0 0
dam variance 0 0.25 0 0.5 0 0 0 0 0
within-family 
variance 0 0.5 0 0.5 0 1 0 0 0

Between-sex
sire covariance 0 0 0 0 0 0 0.25 0 0
dam covariance 0 0 0 0 0 0 0.25 0.5 0
within-family 
covariance 0 0 0 0 0 0 0.5 0.5 1
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Figure B4.1.  Analyses of the HS pedigree when implementing “informed” observed variance 
components models (circles, A-C) or “informed” animal models (squares, D-F) with parent 
phenotypic information included in the analyses.  The panels depict average percent bias in 
autosomal additive variance estimates in the homogametic sex (open, red symbols) and the 
heterogametic sex (closed, blue symbols) as a function of the proportion of phenotypic variance 
comprised of sex-linked variance (hs

2) when the sex-linked between-sex additive genetic 
correlation is approximately 0.71 (first column), 0 (second column), or -0.71 (third column).  In 
all panels, bars indicate the extent of the 95% quantile of estimates. 
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F
igure B4.2.  Analyses of the HS pedigree when implementing “informed” observed variance 
components models (circles, A-C) or “informed” animal models (squares, D-F) with parent 
phenotypic information included in the analyses.  The panels depict the genomic (autosomal and 
sex-linked) between-sex additive genetic correlation (rg-hom,het) when the sex-linked between-sex 
additive genetic correlation is approximately 0.71 (first column), 0 (second column), or -0.71 
(third column).  The horizontal black line indicates the simulated autosomal between-sex additive 
genetic correlation of one and the diagonal grey line indicates the expected genomic between-sex 
additive genetic correlation.  In all panels, bars indicate the extent of the 95% quantile of 
estimates.
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Figure B4.3. Analyses of the HS pedigree when implementing “naïve” observed variance 
components models (circles, A-C) or “naïve” animal models (squares, D-F) with parent 
phenotypic information included in the analyses.  The panels depict average percent bias in 
autosomal additive variance estimates.  Panel arrangement, symbols, and lines as in figure B4.1.  
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Figure B4.4.  Analyses of the HS pedigree when implementing “naïve” observed variance 
components models (circles, A-C) or “naïve” animal models (squares, D-F) with parent 
phenotypic information included in the analyses.  The panels depict the autosomal between-sex 
additive genetic correlation (ra-hom,het).  Panel arrangement, symbols, and lines as in figure B4.2.  
Note, unlike in the text the between-sex additive genetic correlation was estimated from the 
design matrix and not from the sire (co)variance components (see Results).    
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Figure B4.5. Analyses of the HS pedigree when implementing “informed” observed variance 
components models (circles) with parent phenotypic information included in the analyses.  The 
top panels (A-C) depict the average percent bias in sex-linked additive variance estimates and the 
bottom panels (D-F) depict the average percent bias in residual variance estimates when the sex-
linked between-sex additive genetic correlation is approximately 0.71 (first column), 0 (second 
column), or -0.71 (third column).  Symbols, and lines as in figure B4.1.  Note for the smallest 
value of hs

2, the sex-linked additive genetic variances were not estimable.  Also, the error bars for 
the three smallest values of hs

2 depicted extend beyond the range of the plotting region. 
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Figure B4.6. Analyses of the HS pedigree when implementing “informed” animal models 
(squares) with parent phenotypic information included in the analyses.  The top panels (A-C) 
depict the average percent bias in sex-linked additive variance estimates and the bottom panels 
(D-F) depict the average percent bias in residual variance estimates when the sex-linked between-
sex additive genetic correlation is approximately 0.71 (first column), 0 (second column), or -0.71 
(third column).  Symbols and lines as in figure B4.1.  Note some models estimating sex-linked 
variance for the homogametic sex converged on the boundary of the parameter space (i.e., zero).  
Specifying different starting values improved the model behavior, but those results are not shown 
(see text for a discussion).
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Figure B4.7. Analyses of the HS pedigree when implementing “naïve” observed variance 
components models (circles; panels A-C) or “naïve” animal models (squares; panesl D-F) with 
parent phenotypic information included in the analysis.  The panels depict average percent bias in 
residual variance estimates when the sex-linked between-sex additive genetic correlation is 
approximately 0.71 (first column), 0 (second column), or -0.71 (third column).  Symbols and 
lines as in figure B4.1.
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APPENDIX C: Supporting Information for Chapter 5

C1 Joint scaling test coefficient matrices

Table C.1.1. The M matrix of coefficients used in the joint scaling tests (F2 reference metric).

Composite genetic effect

Male m a d axa axd dxd ma md c Xa

P1 1 1 0 1 0 0 1 0 1 1
B1a (P1xF1) 1 0.5 0.5 0.25 0.25 0.25 1 0 1 1
B1ra (F1xP1) 1 0.5 0.5 0.25 0.25 0.25 0 1 1 0
F1 (P1xP2) 1 0 1 0 0 1 1 0 1 1
F2 (F1xF1) 1 0 0.5 0 0 0.25 0 1 1 0
F2r (F1rxF1r) 1 0 0.5 0 0 0.25 0 1 -1 0
F1r (P2xP1) 1 0 1 0 0 1 -1 0 -1 -1
B2rb (F1rxP2) 1 -0.5 0.5 0.25 -0.25 0.25 0 1 -1 0
B2b (P2xF1r) 1 -0.5 0.5 0.25 -0.25 0.25 -1 0 -1 -1
P2 1 -1 0 1 0 0 -1 0 -1 -1

Female m a d axa axd dxd ma md c Xa Xd

P1 1 1 0 1 0 0 1 0 1 1 0
B1a (P1xF1) 1 0.5 0.5 0.25 0.25 0.25 1 0 1 1 0
B1ra (F1xP1) 1 0.5 0.5 0.25 0.25 0.25 0 1 1 0.5 0.5
F1 (P1xP2) 1 0 1 0 0 1 1 0 1 0 0
F2 (F1xF1) 1 0 0.5 0 0 0.25 0 1 1 0.5 0.5
F2r (F1rxF1r) 1 0 0.5 0 0 0.25 0 1 -1 -0.5 0.5
F1r (P2xP1) 1 0 1 0 0 1 -1 0 -1 0 1
B2rb (F1rxP2) 1 -0.5 0.5 0.25 -0.25 0.25 0 1 -1 -0.5 0.5
B2b (P2xF1r) 1 -0.5 0.5 0.25 -0.25 0.25 -1 0 -1 -1 0
P2 1 -1 0 1 0 0 -1 0 -1 -1 0
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C2 Model AIC statistics

Traits are abbreviated as follows: thorax length (Lthorax), abdomen length (Labd), total length 

(Ltotal), abdomen width (Wabd), front-femur length (Lff), front-femur width (Wff), mid-femur 

length (Lmf), hind-femur length (Lhf), genital length (Lgenital), segment 8 length (Lseg8), 

segment 7 margin length (Lseg7mar), and spine width (Wspine).  Composite genetic effects are 

abbreviated as in the Materials and Methods of the main text, except autosomal additive, 

dominance and digenic epistatic effects are abbreviated as A, D, and E, respectively.

File: “C2FemaleExp1.xlsx”

Table C2.1. Female experiment 1 AIC values.

Table C2.2. Female experiment 1 AIC differences (ΔAIC). 

Table C2.3. Female experiment 1 AIC weights (w).

File: “C2MaleExp1.xlsx”

Table C2.4. Male experiment 1 AIC values.

Table C2.5. Male experiment 1 AIC differences (ΔAIC).

Table C2.6. Male experiment 1 AIC weights (w).

File: “C2Female Exp2.xlsx”

Table C2.7. Female experiment 2 AIC values.

Table C2.8. Female 2011 experiment 2 differences (ΔAIC).

Table C2.9. Female 2011 experiment 2 weights (w).

File: “C2MaleExp2.xlsx”

Table C2.10. Male experiment 2 AIC values.

Table C2.11. Male experiment 2 AIC differences (ΔAIC).

Table C2.12. Male experiment 2 AIC weights (w).
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C3 Model averaged parameter estimates

Table C3.1 (in file “C3MAPE.xlsx”) contains the model averaged parameter estimates (MAPEs) 

for females and males.  The MAPE for each composite genetic effect is expressed as the 

proportion of the difference between the two parental lines (P1 and P2) that is explained by each 

MAPE.  Wald tests were conducted to test if each MAPE differed between females and males in 

each experiment.

Table C3.2 (in file “C3MAPE.xlsx”) contains the female specific MAPEs.  To compare female 

and male MAPEs, the sum of ma and Xa in females was used to reflect the quantity reflected by 

the estimate of ma in males.  However, we could separately estimate ma and Xa in females as well 

as Xd and therefore present them here.
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C4 Among year variation in a population cross

We compared the model averaged estimates (MAPEs) of composite genetic effects between the 

two experiments, within each sex.  We used the same Wald test statistic as in the main text where 

we compared the MAPEs between sexes, but within experiments.  Results are presented in table 

C4.1 and suggest that the differences in genetic architectures observed in each experiment are 

mostly the same.  However, there were a few traits for which the two experiments differed in the 

estimates of the composite genetic effects.  This suggests differences between RSC and LLC (the 

two populations not crossed) in the type and strength of genetic effects underlying these traits.

Pilot experiment comparison

In the spring of 2009, we collected water striders from the same two streams as Experiment one 

in the main text to conduct a pilot experiment of the line cross between Santa Cruz Island (SCI) 

and Rattlesnake Creek (RSC).  The sampling and rearing protocol were the same as described in 

the main text, except instead of seeding the rearing cages with eggs from mating pairs we created 

the lines in mass-mating tanks to produce eggs for each cross type.  We collected eggs from the 

tanks and then placed these in rearing cages in the growth chamber.  Consequently, in the pilot 

experiment individuals reared in cages were not necessarily related (individuals within a cage 

from Experiment one and two were either full- or half-siblings; they always had the same dam).  

We only produced the first generation of crosses: P1 (RSC x RSC), F1 (RSC x SCI), F1r (SCI x 

RSC), and P2 (SCI x SCI).  Here, we compare line means from this pilot experiment in 2009 to 

Experiment one from the main text (conducted in 2010) for the four lines of the first lab reared 

generation only.  Note that in 2009 we did not measure length of the segment 7 margin 

(Lseg7mar) or spine width (Wspine) and so cannot compare these between 2009 and 2010.
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Overall, we observed a very similar pattern in the line means from one year to the next in 

this cross.  We expressed both F1 (RSC x SCI) and F1r (SCI x RSC) cage means as deviations 

from the mean of the two parent populations.  Thus, the deviations represent the distance from an 

additive only genetic model.  Any departure from the additive expectation is presumed to reflect 

the composite genetic effects we quantified for experiments one and two in the main text.  If there 

is no difference in the deviation from the additive expectation from one year to the next in each 

line, we conclude that the genetic effects underlying the two parent populations are the same from 

one year to the next.  We tested for a significant year-by-line interaction using analysis of 

variance on the F1 and F1r cage means expressed as deviations from each year.  The only 

significant interaction term in the ANOVA was for male thorax length (Lthorax: p=0.044).  These 

results suggest that the pattern of line differences does not change from one year to the next and 

we conclude that the genetic architecture, as estimated from our sampled individuals from the 

RSC and SCI populations, is the same in 2009 as in 2010.

We also compared first generation reciprocal hybrid female lines to test for maternal 

genetic effects (see X-linkage analyses section of Materials and Methods).  We found evidence of 

maternal effects contributing to the difference between reciprocal hybrid lines in Lhf, Lgenital, 

and Lseg8 (Table C4.2).  However, these p-values were no longer significant at a Bonferroni-

adjusted critical level when correcting for all tests (table-wide significance) or even just female 

tests (just the tests in the top half of the table).  Similar to the results from Experiment one, none 

of the male comparisons were significant indicating no X-linkage for the traits non-significant in 

the female comparisons (Table C4.2).  Therefore, when comparing the RSC and SCI population 

cross conducted in two separate years, we see very close agreement between the results for males, 

however, results for female genital and some leg traits do not agree between the years.
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Table C4.1. Comparison of model averaged parameter estimates between years and within sex.  P-values of the Wald chi-squared tests are 
presented below.  Abbreviations are explained in the text.

Female

a d axa axd dxd ma md c Xa Xd

Lthorax p<0.05 0.891 0.902 0.193 0.858 0.849 0.719 0.657 p<0.01 0.498

Labd 0.282 0.184 0.698 0.196 0.062 0.945 0.146 0.432 0.398 0.55

Ltotal 0.094 0.755 0.809 0.099 0.614 0.756 0.118 0.809 p<0.05 0.306

Wabd 0.984 p<0.05 p<0.01 0.342 p<0.05 0.826 0.721 0.882 0.967 0.453

Lff 0.377 0.134 p<0.01 0.603 0.744 0.281 0.419 0.835 0.813 0.545

Wff 0.106 p<0.01 p<0.0001 0.387 p<0.05 0.233 0.741 0.128 0.741 0.579

Lmf 0.296 p<0.05 p<0.01 0.193 0.257 0.847 0.155 0.912 0.152 0.354

Lhf 0.178 0.181 p<0.05 0.448 0.676 0.599 0.287 0.5 0.228 0.549

Lgenital 0.973 0.859 0.571 0.441 0.709 0.202 0.432 0.399 0.521 p<0.05

Lseg8 0.607 0.705 0.419 0.884 0.68 0.338 p<0.05 p<0.05 0.362 0.685

Lseg7mar 0.366 0.315 0.645 0.511 0.224 0.724 0.206 0.517 0.109 0.332

Wspine 0.638 0.595 0.268 0.409 0.656 0.412 0.499 p<0.001 0.191 0.473

Male

a d axa axd dxd ma md c

Lthorax 0.483 0.122 0.61 0.468 0.164 0.452 0.703 0.131

Labd 0.257 0.91 0.364 0.88 0.226 0.743 0.242 0.233

Ltotal 0.295 0.065 p<0.05 0.45 0.791 0.823 0.39 0.107

Wabd 0.206 0.333 p<0.01 0.06 0.671 0.881 0.473 p<0.05

Lff 0.852 0.8 0.067 0.065 0.323 0.408 0.813 0.21

Wff 0.337 0.786 0.104 0.185 0.527 0.314 0.233 0.515

Lmf 0.315 0.517 0.446 0.073 0.792 0.349 0.308 0.636

Lhf 0.351 0.58 0.07 0.559 0.57 0.66 0.741 0.12

Lgenital 0.094 p<0.0001 p<0.01 p<0.05 p<0.001 0.115 0.357 0.423

Lseg8 0.07 0.055 0.662 p<0.05 p<0.01 0.48 p<0.05 p<0.05
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Lseg7mar 0.57 0.726 0.406 0.184 0.269 0.8 0.902 0.312

Wspine 0.871 0.62 0.944 0.707 0.659 p<0.01 0.17 p<0.001
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Table C4.2. One-tailed t-tests comparing first generation reciprocals. P-values are no longer significant after a sequential Bonferroni 
correction accounting for all comparisons (42) or just the number of comparisons for each sex (female=20, male=22).

Female

2010 2009
F1                

(P1xP2)
F1r               

(P2xP1) t df p
F1                

(P1xP2)
F1r               

(P2xP1) t df p
Lthorax 6.768 6.751 0.310 23.59 0.62 6.713 6.770 -1.107 25.99 0.14
Labd 6.863 6.896 -0.580 23.72 0.28 6.872 6.864 0.173 25.72 0.57
Ltotal 16.127 16.111 0.153 22.51 0.56 16.050 16.159 -1.181 25.40 0.12
Wabd 2.906 2.941 -0.955 12.62 0.18 2.874 2.875 -0.021 25.98 0.49
Lff 4.422 4.414 0.179 15.89 0.57 4.429 4.462 -0.627 25.95 0.27
Wff 0.568 0.578 -1.242 14.25 0.12 0.525 0.518 0.862 25.59 0.8
Lmf 9.564 9.765 -1.978 13.56 0.034 9.642 9.733 -1.015 25.08 0.16
Lhf 9.021 9.092 -0.822 16.05 0.21 8.813 9.011 -2.004 23.57 0.028
Lgenital 0.923 0.916 0.386 16.71 0.65 0.925 0.954 -1.916 25.44 0.033
Lseg8 0.664 0.662 0.085 15.50 0.53 0.646 0.678 -2.825 25.24 0.0045

Male
2010 2009

F1                
(P1xP2)

F1r               
(P2xP1) t df p

F1                
(P1xP2)

F1r               
(P2xP1) t df p

Lthorax 6.536 6.299 2.897 7.94 0.99 6.456 6.389 1.286 15.24 0.89
Labd 4.138 4.055 1.604 7.39 0.92 4.125 4.048 1.871 14.35 0.96
Ltotal 15.028 14.625 2.342 7.03 0.97 15.159 14.974 1.128 13.59 0.86
Wabd 2.489 2.453 1.136 12.19 0.86 2.517 2.428 1.512 11.57 0.92
Lff 4.478 4.494 -0.247 8.07 0.41 4.479 4.513 -0.747 13.49 0.23
Wff 0.722 0.706 1.412 10.55 0.91 0.672 0.652 1.415 16.29 0.91
Lmf 10.130 9.899 1.531 7.53 0.92 10.055 9.857 1.450 11.23 0.91
Lhf 9.560 9.298 1.729 7.23 0.94 9.385 9.391 -0.046 13.35 0.48
Lgenital 2.875 2.781 2.673 12.60 0.99 3.053 3.041 0.141 13.05 0.56
Lseg8 1.338 1.293 2.915 13.40 0.99 1.496 1.506 -0.165 13.54 0.44
Lpyg 1.363 1.348 0.734 12.06 0.76 1.437 1.414 0.657 14.99 0.74
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Figure C4.1.  Observed line means (±2SE) of somatic traits for the population cross in 
experiment one in 2010 (open circles) and the pilot experiment in 2009 (filled boxes).  Each plot 
depicts female (left column) or male (right column) line means.  Line means are arranged from 
left to right along the x-axis to reflect the approximate proportion of P2 (SCI x SCI) genes each 
line contains.  The dashed line indicates the additive expectation.
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Figure C4.2. Observed line means (±2SE) of leg traits for the population crosses.  Arrangement 
and symbols the same as in Figure C4.1.
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Figure C4.3. Observed line means (±2SE) of genital traits for the population crosses.  
Arrangement and symbols the same as in Figure C4.1.
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C5 Derivation of a log-likelihood function and AIC from weighted least-squares regression 
The natural logarithm of the likelihood function (L) of a weighted least-squares regression is:

]ln)2ln()ˆln([)ln( 12
2
1 

  V nnnL MLe (C5.1)

We assume the matrix V-1 contains only diagonal elements representing the squared standard 

error of the line means (the standard error of the line means are independent of one another).  

This enables the logarithm of |V-1| (the determinant of V-1) to instead be expressed as a sum of 

logarithms of the diagonal elements of V-1.  The maximum likelihood estimate of the residual 

variance ( 2ˆ MLe ) is simply the RSSW / n.  With these simplifications, equation C5.1 reduces to:
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where n is the number of lines in the experiment and SEi is the standard error of the mean for the 

ith line.  All but the first term in equation A2 are either an additive constant or will yield the same 

value for all models and therefore will take on a constant value in all models of the candidate set.  

Since the constant contributes the same value to the AIC of all models, it can be ignored.  Thus, 

substitution of the first term in equation A2 into equation 3 from the text will yield the AIC of a 

weighted least-squares regression model in equation 4 above.

Note, the number of parameters estimated in the model, K, is equal to the number of 

genetic parameters (p) plus two.  The two additional model parameters are the intercept and 

residual variance ( 2ˆ MLe ) estimated in the regression (Burnham and Anderson 2002, p. 63).  We 

note our equation 4 above differs from the AIC equation of Bieri and Kawecki (2003, their 
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equation 6).  However, our AIC formula is equivalent to the least-squares regression AIC formula 

of Burnham and Anderson (2002, p. 63).     


