
Supporting Information to
Accounting for genetic differences among
unknown parents in microevolutionary

studies: How to include genetic groups in
quantitative genetic animal models

Matthew E. Wolak & Jane M. Reid

Contents

Appendix S1: Glossary 3

References: Appendix S1 . 5

Appendix S2: Collection of pedigrees from wild populations 6

Table S2.1 References . 10

References: Appendix S2 . 12

Appendix S3: Breeding value prediction 13

References: Appendix S3 . 14

Appendix S4: Simulating data with genetic group effects 15

4.1 Simulating a fixed difference between groups . 16

4.2 Simulating a temporal trend in breeding values . 17

Appendix S5: Development of genetic groups in agricultural science 19

References: Appendix S5 . 21

Appendix S6: Construction and implementation of Q and A* 23

6.1 A small example pedigree . 25

6.2 Constructing Q . 26

6.3 Constructing A* . 28

6.3.1 Genetic groups on top or bottom of A*? . 29

6.3.2 Removing singularities and other problems within A* 31

6.4 How to fit genetic groups in MCMCglmm, ASReml-R, ASReml-standalone, & WOMBAT . . . 33

6.4.1 Tutorial dataset ggTutorial . 33

6.4.2 MCMCglmm . 35

6.4.2.1 Preparing a pedigree with genetic groups . 36

6.4.2.2 Fixed explicit genetic group effects with Q (from nadiv) 37

1

6.4.2.3 Random implicit genetic group effects with A* (from nadiv) 40

6.4.3 ASReml in R . 43

6.4.3.1 Preparing a pedigree with genetic groups . 43

6.4.3.2 Fixed explicit genetic group effects with Q (from nadiv) 45

6.4.3.3 Fixed implicit genetic group effects with A* (from nadiv or asreml) 47

6.4.3.4 Random implicit genetic group effects with A* (from nadiv) 50

6.4.4 ASReml Standalone . 53

6.4.4.1 Preparing a pedigree with genetic groups . 54

6.4.4.2 Fixed explicit genetic group effects with Q (from nadiv) 55

6.4.4.3 Fixed implicit genetic group effects with A* (from nadiv) 58

6.4.4.4 Fixed implicit genetic group effects with A* (from ASReml) 63

6.4.4.5 Random implicit genetic group effects with A* (from ASReml) 66

6.4.5 WOMBAT . 70

6.4.5.1 Preparing a pedigree with genetic groups . 71

6.4.5.2 Fixed explicit genetic group effects with Q (from nadiv) 72

6.4.5.3 Random implicit genetic group effects with A* (from nadiv) 75

6.4.5.4 WOMBAT’s genetic groups (Random group effects with Q from nadiv) 79

References: Appendix S6 . 82

Appendix S7: Fuzzy classification of genetic groups 85

7.1 Constructing the fuzzy classification matrix F . 86

7.2 Constructing Qf . 87

7.3 Constructing A∗
f . 89

References: Appendix S7 . 90

Software version information 90

2

Appendix S1: Glossary

We define a list of key words and concepts that are used in the main text.

accuracy (reliability): The correlation between true and predicted breeding values, where the

reliability is the accuracy squared (Mrode 2005, p.50). True breeding values are the actual additive genetic

effects of individuals. Predicted breeding values are the breeding values assigned by a statistical model.

additive genetic relatedness matrix (A): Also called the numerator relationship matrix. A

symmetrical matrix (same values above and below the diagonal) that indicates the proportion of homologous

alleles shared identical-by-descent among all individuals in a pedigree. The matrix has diagonal elements

equal to 1 + fi, where fi is individual i’s coefficient of inbreeding, which measures the probability that

homologous alleles in two gametes drawn at random from individual i will be identical-by-descent relative to

the pedigree base population (Lynch & Walsh 1998, p.135; Wang 2014). The off-diagonal elements are the

numerators in Wright’s coefficient of relationship between two individuals (1922), which measures twice the

coefficient of coancestry, or kinship, and is defined as the probability that two homologous alleles drawn at

random from two individuals will be identical-by-descent relative to the pedigree base population (Lynch &

Walsh 1998, p.135; Wang 2014).

base population: The phantom parents of individuals in the pedigree with unknown parents. Basic

animal models assume that the base population has a mean breeding value of zero and all subsequent breeding

values are expressed relative to the breeding values of the base population. Elsewhere, base populations are

alternatively defined for convenience as those individuals in the pedigree with unknown parents (Kruuk 2004;

Mrode 2005, p.62).

breeding value: The sum of additive allelic effects for an individual’s genotype defined with respect

to a particular population and expressed as a deviation from the reference population’s mean genotypic value

(Lynch & Walsh 1998, p.79).

explicit genetic groups: A method of analysis which estimates the differences among genetic groups

in their mean total additive genetic effects by fitting a separate fixed effect regression for each genetic group.

This approach results in a statistical model that is equivalent to the model under the implicit genetic

group approach.

fixed effects: Factors for which an estimate of the unknown effect size of each level is of interest and

for which all levels in the population are assumed to have been observed (Searle 1997; Bolker et al. 2009).

founder population: The first cohort of observed individuals in a study, for which all parents are by

3

definition unknown.

genetic group: A subset of the pedigree base population that can be genetically distinct from the

rest of the base population. The genetic group effect is the mean deviation of total additive genetic effects

in a particular genetic group. Conceptually, the genetic group effects to be estimated can be thought of as

fixed effects.

identical-by-descent (IBD): Alleles that are direct descendants of the same allele in a common

ancestor (Lynch & Walsh 1998, p.132).

implicit genetic groups: A method of analysis which directly models the total additive genetic

effects of individuals (as opposed to modelling their genetic group effects separately from their breeding

values), thereby incorporating the genetic group effects into the individual random effects. Estimates of

the fixed genetic group effects are also provided by the model. This approach results in a statistical model

that is equivalent to the model under the explicit genetic group approach.

infinitesimal model: A genetic model of quantitative traits that assumes phenotypes are determined

by an infinite number of loci, each with an infinitesimally small effect on trait expression (Fisher 1918; Lynch

& Walsh 1998, p.47; Mrode 2005, p.2).

phantom parent: An unknown (i.e., unidentified or unobserved) parent of an individual. Analyses

that make genetic inferences from pedigrees typically assume that phantom parents have one offspring and

have the same genetic properties as the pedigree base population (Westell, Quaas & Van Vleck 1988).

random effects: Factors for which the levels are a sample from the entire population of values

constituting the random variable (Searle 1997). For a given dataset with a sample of the observed dependent

variable, random effects are the realized (but unobservable) values of the random variable. Predicting the

realized values of the random effects and estimating the parameters describing the distribution of levels are

the main aims in fitting mixed effect genetic models (Searle 1997; Bolker et al. 2009).

relatedness: A measure of the extent to which individuals share alleles identical-by-descent that is

defined relative to the base population. Relatedness has many formal definitions (see Lynch & Walsh 1998,

p.132), but is used here to refer to elements of the additive genetic relatedness matrix (which equal

twice the coefficient of coancestry).

total additive genetic effects: The sum of the additive effects of an individual’s genes on any focal

phenotype. The expected value is the mean of the additive genetic effects that an individual receives from

both parents.

4

References: Appendix S1

Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H. & White, J.S. (2009)

Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and

Evolution, 24, 127–135.

Fisher, R.A. (1918) The correlation between relatives on the supposition of Mendelian inheritance. Transactions

of the Royal Society of Edinburgh, 52, 399–433.

Kruuk, L.E.B. (2004) Estimating genetic parameters in natural populations using the “animal model.”

Philosophical Transactions of the Royal Society B, 359, 873–890.

Lynch, M. & Walsh, B. (1998) Genetics and Analysis of Quantitative Traits. Sinauer Associates, Incorporated,

Sunderland, MA.

Mrode, R.A. (2005) Linear Models for the Prediction of Animal Breeding Values, 2nd ed. CABI Publishing,

Cambridge, MA.

Searle, S.R. (1997) The matrix handling of BLUE and BLUP in the mixed linear model. Linear Algebra and

its Applications, 264, 291–311.

Wang, J. (2014) Marker-based estimates of relatedness and inbreeding coefficients: an assessment of current

methods. Journal of Evolutionary Biology, 27, 518–530.

Westell, R.A., Quaas, R.L. & Van Vleck, L.D. (1988) Genetic groups in an animal model. Journal of Dairy

Science, 71, 1310–1318.

Wright, S. (1922) Coefficients of inbreeding and relationship. American Naturalist, 56, 330–338.

5

Appendix S2: Collection of pedigrees from wild populations

To illustrate that substantial numbers of parents are commonly unknown in wild population pedigrees, we

extracted standard pedigree statistics from published papers citing the R package pedantics (Morrissey &

Wilson 2010). The focal statistics comprised the total number of individual animals in the pedigree (i.e.,

pedigree size), the percentages of individuals that had unknown dams and sires [calculated as: 100 * (pedigree

size - the number of identified maternities or paternities) / pedigree size], and maximum pedigree depth

(i.e., the maximum number of lineal ancestors of any individual). Only pedigrees from wild populations were

retained; pedigrees from captive populations were excluded (e.g., zebra finch, Taeniopygia guttata, located in

Seewiesen, Germany). Use in quantitative genetic analyses was not a requirement for inclusion of a pedigree

in our summary. When data for both a full pedigree and a pruned pedigree were available in the same

paper, we report the largest pedigree for which the required statistics were provided. Pedigree statistics

from multiple papers using the same study population are included since reported pedigree structures often

differed due to further data collection, paternity assignment, or different degrees of pruning to informative

individuals for different analyses.

6

Table S2.1. Standard pedigree statistics from published papers reporting values from pedantics that indicate the total number of individual

animals in the pedigree, the percentages of individuals that had unknown dams and sires, and the maximum pedigree depth. Bird species are ordered

following the British List (BOU 2013). The order from left to right of Fig. 1 in the main text corresponds to the order of rows here.

Organism Common name Population Pedigree

size

%Unknown

dams

%Unknown

sires

Maximum

pedigree

depth

Ref.

Birds

Hydrobates European storm Benidorm Island, 230 67 69 2 [12]

pelagicus petrel Spain

Falco Common kestrel Campo Azalvaro, 2716 27 27 7 [11]

tinnunculus Spain

Charadrius Piping plover Great Lakes, USA 2420 6 6 11 [20]

melodus

Cyanistes Blue tit Gotland, Sweden 1090 20 20 4 [5]

caeruleus

Cyanistes Blue tit Wytham Woods, 23023 14 15 [14]

caeruleus UK

Parus major Great tit Boshoek, Belgium 2178 44 46 12 [13]

Parus major Great tit Hoge Veluwe, 3460 67 67 16 [9]

The Netherlands

Parus major Great tit Oosterhout, 1062 45 47 18 [9]

The Netherlands

Parus major Great tit Vlieland, 3686 28 29 40 [9]

7

The Netherlands

Parus major Great tit Lauwersmeer, 2565 50 50 15 [19]

The Netherlands

Parus major Great tit Bagley Wood, UK 8144 17 17 [7]

Parus major Great tit Bagley Wood, UK 1635 67 68 [6]

Parus major Great tit Wytham Woods, 156305 53 53 [14]

UK

Hirundo rustica Barn swallow Denmark 487 70 67 3 [23]

Hirundo rustica Barn swallow Spain 1407 87 88 4 [23]

Acrocephalus Great reed Lake Kvismaren 557 62 62 8 [21]

arundinaceus warbler Sweden

Acrocephalus Great reed Lake Kvismaren, 550 62 61 7 [22]

arundinaceus warbler Sweden

Cinclus cinclus White-throated Zurich, 380 23 23 14 [1]

dipper Switzerland

Ficedula Collared Gotland, Sweden 7246 72 73 11 [10]

albicollis flycatcher

Ficedula Pied flycatcher Tomsk Region, 413 61 59 6 [4]

hypoleuca Western Siberia

Melospiza Song sparrow Mandarte Island, 5721 3 3 26 [26]

melodia Canada

Mammals

Cervus elaphus Red deer Isle of Rum, 1336 11 51 [25]

8

Scotland

Cervus elaphus Red deer Isle of Rum, 452 16 52 [16]

Scotland

Ovis aries Soay sheep St. Kilda, Scotland 7299 43 71 8 [17]

Ovis aries Soay sheep St. Kilda, Scotland 1752 23 39 9 [8]

Ovis aries Soay sheep St. Kilda, Scotland 6740 11 32 10 [2]

Mungos mungo Banded mongoose Queen Elizabeth 1534 41 59 [18]

National Park,

Uganda

Tamiasciurus North American SW Yukon, 7799 21 77 [15]

hudsonicus red squirrel Canada

Macaca mulatta Rhesus macaque Cayo Santiago 428 3 63 8 [3]

Island, Puerto Rico

Papio Savannah baboon Amboseli, Kenya 1409 8 63 [24]

cynocephalus

9

Table S2.1 References

[1] Becker, P.J.J., Reichert, S., Zahn, S., Hegelbach, J., Massemin, S., Keller, L.F., Postma, E. & Criscuolo, F.

(2015) Mother–offspring and nest-mate resemblance but no heritability in early-life telomere length

in white-throated dippers. Proceedings of the Royal Society B, 282, 20142924.

[2] Bérénos, C., Ellis, P.A., Pilkington, J.G. & Pemberton, J.M. (2014) Estimating quantitative genetic

parameters in wild populations: a comparison of pedigree and genomic approaches. Molecular

Ecology, 23, 3434–3451.

[3] Blomquist, G.E. & Brent, L.J.N. (2014) Applying quantitative genetic methods to primate social behavior.

International Journal of Primatology, 35, 108–128.

[4] Bushuev, A. V, Husby, A., Sternberg, H. & Grinkov, V.G. (2012) Quantitative genetics of basal metabolic

rate and body mass in free-living pied flycatchers. Journal of Zoology, 288, 245–251.

[5] Drobniak, S.M., Dubiec, A., Gustafsson, L. & Cichoń, M. (2015) Maternal age-related depletion of offspring

genetic variance in immune response to phytohaemagglutinin in the blue tit (Cyanistes caeruleus).

Evolutionary Biology, 42, 88–98.

[6] Evans, S.R., Schielzeth, H., Forstmeier, W., Sheldon, B.C. & Husby, A. (2014) Nonautosomal genetic

variation in carotenoid coloration. The American naturalist, 184, 374–383.

[7] Evans, S.R. & Sheldon, B.C. (2012) Quantitative genetics of a carotenoid-based color: heritability and

persistent natal environmental effects in the great tit. The American Naturalist, 179, 79–94.

[8] Hayward, A.D., Garnier, R., Watt, K. a, Pilkington, J.G., Grenfell, B.T., Matthews, J.B., Pemberton,

J.M., Nussey, D.H. & Graham, A.L. (2014) Heritable, heterogeneous, and costly resistance of sheep

against nematodes and potential feedbacks to epidemiological dynamics. The American Naturalist,

184, S58–76.

[9] Husby, A., Hille, S.M. & Visser, M.E. (2011) Testing mechanisms of Bergmann’s rule: phenotypic decline

but no genetic change in body size in three passerine bird populations. American Naturalist, 178,

202–213.

[10] Husby, A., Schielzeth, H., Forstmeier, W., Gustafsson, L. & Qvarnstrom, A. (2013) Sex chromosome

linked genetic variance and the evolution of sexual dimorphism of quantitative traits. Evolution, 67,

609–619.

10

[11] Kim, S.-Y., Fargallo, J.A., Vergara, P. & Martinez-Padilla, J. (2013) Multivariate heredity of melanin-

based coloration, body mass and immunity. Heredity, 111, 139–146.

[12] Kim, S.-Y., Sanz-Aguilar, A., Mínguez, E. & Oro, D. (2012) Small-scale spatial variation in evolvability

for life-history traits in the storm petrel. Biological Journal of the Linnean Society, 106, 439–446.

[13] Korsten, P., van Overveld, T., Adriaensen, F. & Matthysen, E. (2013) Genetic integration of local

dispersal and exploratory behaviour in a wild bird. Nature Communications, 4, 2362.

[14] Liedvogel, M., Cornwallis, C.K. & Sheldon, B.C. (2012) Integrating candidate gene and quantitative

genetic approaches to understand variation in timing of breeding in wild tit populations. Journal of

Evolutionary Biology, 25, 813–823.

[15] Mcfarlane, S.E., Gorrell, J.C., Coltman, D.W., Humphries, M.M., Boutin, S. & McAdam, A.G. (2014)

Very low levels of direct additive genetic variance in fitness and fitness components in a red squirrel

population. Ecology and Evolution, 4, 1729–1738.

[16] Morrissey, M.B., Walling, C.A., Wilson, A.J., Pemberton, J.M., Clutton-Brock, T.H. & Kruuk, L.E.B.

(2012) Genetic analysis of life-history constraint and evolution in a wild ungulate population. American

Naturalist, 179, E97–E114.

[17] Morrissey, M.B. & Wilson, A.J. (2010) Pedantics: an R Package for pedigree-based genetic simulation

and pedigree manipulation, characterization and viewing. Molecular Ecology Resources, 10, 711–719.

[18] Nichols, H.J., Cant, M.A., Hoffman, J.I. & Sanderson, J.L. (2014) Evidence for frequent incest in a

cooperatively breeding mammal. Biology Letters, 10, 20140898.

[19] Nicolaus, M., Brommer, J.E., Ubels, R., Tinbergen, J.M. & Dingemanse, N.J. (2013) Exploring patterns

of variation in clutch size-density reaction norms in a wild passerine bird. Journal of Evolutionary

Biology, 26, 2031–2043.

[20] Saunders, S.P. & Cuthbert, F.J. (2014) Genetic and environmental influences on fitness-related traits in

an endangered shorebird population. Biological Conservation, 177, 26–34.

[21] Tarka, M., Akesson, M., Hasselquist, D. & Hansson, B. (2014) Intralocus sexual conflict over wing length

in a wild migratory bird. The American Naturalist, 183, 62–73.

[22] Tarka, M., Hansson, B. & Hasselquist, D. (2015) Selection and evolutionary potential of spring arrival

phenology in males and females of a migratory songbird. Journal of Evolutionary Biology, 28,

11

1024–1038.

[23] Teplitsky, C., Mouawad, N.G., Balbontin, J., De Lope, F. & Møller, A.P. (2011) Quantitative genetics of

migration syndromes: a study of two barn swallow populations. Journal of Evolutionary Biology, 24,

2025–2039.

[24] Tung, J., Barreiro, L.B., Burns, M.B., Grenier, J.-C., Lynch, J., Grieneisen, L.E., Altmann, J., Alberts,

S.C., Blekhman, R. & Archie, E.A. (2015) Social networks predict gut microbiome composition in

wild baboons. eLife, 4, e05224.

[25] Wilson, A.J., Morrissey, M.B., Adams, M.J., Walling, C.A., Guinness, F.E., Pemberton, J.M., Clutton-

Brock, T.H. & Kruuk, L.E.B. (2011) Indirect genetics effects and evolutionary constraint: an analysis

of social dominance in red deer, Cervus elaphus. Journal of Evolutionary Biology, 24, 772–783.

[26] Wolak, M.E. & Reid, J.M. Unpublished data.

References: Appendix S2

British Ornithologists’ Union. (2013) The British List: A checklist of birds of Britain (8th edition). Ibis, 155,

635–676.

Morrissey, M.B. & Wilson, A.J. (2010) Pedantics: an R Package for pedigree-based genetic simulation and

pedigree manipulation, characterization and viewing. Molecular Ecology Resources, 10, 711–719.

12

Appendix S3: Breeding value prediction

Breeding value reliability, or accuracy, will be affected by both missing phenotypic and pedigree information.

Missing pedigree information also implies that the phenotypic data for an individual’s relatives are also

incomplete. In particular, predicted breeding values may be inaccurate when an individual with unknown

parents also has an unknown phenotype itself. To illustrate the difference between true and predicted breeding

values in such a situation, table S3.1 portrays a simple pedigree and three scenarios in which different forms

of missing information might affect breeding value predictions.

Table S3.1. Breeding value prediction for phantom parents when (1) phenotypes are missing (NA)

for all individuals (yobs1), (2) only the phenotype for a focal individual (F1) was observed (yobs2), or (3) the

phenotype for focal individual (F1) is missing, but a phenotype was observed in F1’s offspring F2 (yobs3).

Simulated breeding values (atrue) are listed for comparison to the predicted breeding values in scenarios (1)

â1, (2) â2, or (3) â3. The table displays the bottom rows of a simulated data set and pedigree where PD and

PS are phantom dam and sire and PM is the mate of F1 that was not observed, and F2 is the offspring of F1

and PM. The table shows all relatives of F1. The full phenotypic data set has a heritability of approximately

h2 = 0.49 and a mean trait value of approximately µ = 40.15.

ID Dam Sire y atrue yobs1 â1 yobs2 â2 yobs3 â3
...

...
...

...
...

...
...

...
...

...
...

PD NA NA 41.05 3.12 NA 0.00 NA -0.53 NA -0.28
PS NA NA 42.79 -1.31 NA 0.00 NA -0.53 NA -0.28
F1 PD PS 38.02 -2.87 NA 0.00 38.02 -1.05 NA -0.57
PM NA NA 41.91 3.06 NA 0.00 NA 0.00 NA -0.57
F2 F1 PM 37.86 -3.61 NA 0.00 NA -0.53 37.86 -1.13

Scenario 1 in table S3.1 shows that when phenotypes are completely unavailable for an individual or

any of its relatives, these individuals are assigned a predicted breeding value of zero (â1). When only a focal

individual has an observed phenotype (F1 in scenario 2 and F2 in scenario 3), then this individual is assigned

a predicted breeding value (â2) equal to the focal individuals phenotypic deviation from the population mean

times the heritability (see eqn 2 in Postma 2006). The predicted breeding values for the focal individual’s

first order relatives are one-half (because relatedness=0.5, scenario 2 and 3) or for second order relatives

one-quarter (because relatedness=0.25, scenario 3) of the focal individual’s predicted breeding value. The

differences between true (atrue) and predicted (â1, â2, â3) breeding values in Table S3.1 illustrate that, when

phenotypic information is missing the predicted breeding values can be very inaccurate and more closely

resemble phenotypic values. More formal evaluations of predicted breeding value accuracy are not pursued

here since our aim is to highlight the simple point that missing phenotypic data from relatives (e.g., because

13

the relatives themselves are not connected to the focal individual through the pedigree) will increasingly

cause predicted breeding values to be inaccurate.

References: Appendix S3

Postma, E. (2006) Implications of the difference between true and predicted breeding values for the study of

natural selection and micro-evolution. Journal of Evolutionary Biology, 19, 309–320.

14

Appendix S4: Simulating data with genetic group effects

It is often useful to be able to simulate datasets on which animal models can be tested for bias, imprecision,

or low power. The rbv() function in the MCMCglmm package can assign breeding values to a pedigree, given

a specified variance-covariance matrix and genetic group means. However, rbv is limited to the supplied

pedigree and cannot simulate trends over time in breeding values. We therefore provide the R function

simGG(), included in the nadiv package (≥v2.14.3), to simulate datasets with various combinations of

population size, number of generations, number of “immigrants”, differences among groups in breeding values,

trends in breeding values, differences among groups in environmental deviations, or trends in environmental

deviations. We used this function to simulate the data for the tutorials and presented in Figs 2 and 4 of the

main text.

The basic code creates K individuals per generation (non-overlapping generations) for g generations,

where pairs number of mating pairs are created by sampling with replacement from the adults of a given

generation. Each pair contributes noff offspring to the next generation. During the simulation, nimm

immigrants (individuals with unknown parent identities) are added to the population at generations specified

by the sequence nimmG.

Individuals in the base population of the “focal” population are assigned total additive genetic values

with a mean of muf and variance VAf. Offspring total additive genetic values u are the mean of their parents’

u values plus a Mendelian sampling deviation drawn from a normal distribution with mean of 0 and variance

equal to 0.5VA(1 − fsd) where VA is VAf and fsd is the mean of the parents’ coefficient of inbreeding f. Each

“immigrant” (individual with unknown parents in generations >1) is assigned a total additive genetic effect

that is drawn from a normal distribution with mean of mui and variance equal to VAi. Residual deviations

are sampled for “focal” and “immigrant” populations separately, using normal distributions with means of

murf and muri, respectively, and variances of VRf and VRi, respectively. Phenotypes are the sum of total

additive genetic effects and residual deviations plus an overall mean mup.

Trends in total additive genetic effects and/or residual deviations can be specified for both the “focal”

and “immigrant” populations. Trends in total additive genetic effects occurring in the “immigrants”, in

the residual deviations occurring in the “focal” population, and in the residual deviations occurring in the

“immigrants” are all produced by altering the mean each generation for the separate distribution from which

each of these effects are drawn. The change in mean over a generation is specified in units of standard

deviations of the respective distributions (e.g., square roots of VAi, VRf, and VRi) and is set with d_bvi,

d_rf, or d_ri, respectively. Trends in total additive genetic effects for the “focal” population are produced by

15

selecting individuals to be parents of the next generation according to their predicted total additive genetic

effects. Individuals are assigned probabilities of being selected as a parent of the next generation depending

on how closely a prediction of their total additive genetic effect matches an optimum value. The parameter

d_bvf specifies how much the optimal total additive genetic effect changes per generation. d_bvf is multipled

by the square root of VAf (i.e., the additive genetic standard deviation of the “focal” population) and the

number of generations since selection began, and it is this quantity that is added to the base generation’s

mean total additive genetic effect (muf) to determine the optimal total additive genetic effect in a given

generation. Individuals with predicted total additive genetic effects closest to this optimum have a higher

probability of being randomly sampled to be parents of the next generation. This represents selection directly

on predicted total additive genetic effects.

The function yields a data.frame with a row for every individual and columns: id, dam, and sire

indicating individual identity, dam, and sire; parAvgU which is the individual’s dam and sire average total

additive genetic effect; mendel which is the Mendelian sampling deviate for an individual; u is the total

additive genetic effect of each individual; r is the residual deviation; p is the individual’s phenotype; is

indicates 0 if the individual was born in the “focal” population or 1 if the individual is an “immigrant”; and

gen specifies the generation in which each individual was born.

Details and examples of the function can be found in the help file associated with the simGG() function.

These can be accessed by running the command ?simGG in an R session.

4.1 Simulating a fixed difference between groups

The data in Figs 2 and 4 of the main text or the object ggTutorial of these tutorials, was simulated so

that all additive genetic and residual variances are the same for both the founder population and immigrant

populations (i.e., VAf=VAi=VRf=VRi=1), and there is no simulated temporal trend in either breeding values

or residual deviations. Thus, we used the function with the following values:

set.seed(102) #<-- value used to simulate 'ggTutorial' of these tutorials

ggTutorial <- simGG(K = 400, pairs = 200, noff = 4, g = 15,

nimm = 40,

muf = 0, mui = 3)

More information on the ggTutorial object can be found in the help file for this dataset, which can be

accessed by running the command ?ggTutorial in an R session.

16

4.2 Simulating a temporal trend in breeding values

Here is an example of simulating data where a positive trend in breeding values occurs in the immigrant

population (e.g., response to directional natural selection in the immigrant population).

sim2df <- simGG(K = 400, pairs = 200, noff = 4, g = 15,

nimm = 40,

muf = 0, mui = 0,

d_bvf = 0, d_bvi = 1)

Now we can plot the phenotypic and genetic data

Note the immigrants total additive genetic value increases each generation

par(mfrow = c(1, 2), cex = 0.7, cex.lab = 1, cex.axis = 0.7)

gens <- c(which(diff(sim2df$gen) == 1), nrow(sim2df))

plot(sim2df$p, axes = FALSE,

main = "Phenotypic", xlab = "Generation", ylab = "Phenotype")

axis(1, c(0, gens), labels = FALSE, tcl = 0.5)

axis(1, gens-(0.5*gens[1]), labels = unique(sim2df$gen), tcl = 0)

axis(2)

plot(sim2df$u, axes = FALSE,

ylim = c(-5, 15),

main = "Genetic", xlab = "Generation", ylab = "Total add. genetic effects")

axis(1, c(0, gens), labels = FALSE, tcl = 0.5)

axis(1, gens-(0.5*gens[1]), labels = unique(sim2df$gen), tcl = 0)

axis(2, seq(-5, 15, 5))

17

Phenotypic

Generation

P
he

no
ty

pe

1 2 3 4 5 6 7 8 9 11 13 15

15
20

25
30

35

Genetic

Generation

To
ta

l a
dd

. g
en

et
ic

 e
ffe

ct
s

1 2 3 4 5 6 7 8 9 11 13 15

−
5

0
5

10
15

Analysing the above dataset with 6 genetic groups (divide generations in which immigrants occur into 6

groups) provides unbiased estimates of the simulated genetic group effects and additive genetic variance.

18

Appendix S5: Development of genetic groups in agricultural science

Genetic group methods have a long history in agricultural science and were first developed to control for

selection in sire models (e.g., Henderson 1973). In a sire model, only the sire breeding values are modelled

(Lynch & Walsh 1998, p.758; Mrode 2005, p.52). Genetic group effects are modelled in a sire model by

nesting the random effects for each sire within fixed effects of sire herd and/or year (i.e., the genetic group),

because sires may have different histories of artificial selection in their ancestry or belong to different herds.

However, these models assume that all sires are unrelated and the genetic group effect applies to only the sire.

Methodological advancements made it possible to first incorporate relatedness among sires and subsequently

to incorporate the relatedness among all individuals through A (i.e., A−1 in an animal model). A accounts for

selection if the model includes records for all individuals on which selection decisions are based and individuals

in the base population have the same expected breeding value (Pollak and Quaas 1983). However, it is not

always possible to obtain records for selection decisions when parents originate from different populations,

often with different expected mean breeding values (Famula, Pollak & Van Vleck 1983). Including a model

factor that reflects differences in breeding values due to selection, however, accommodates both of these

issues. Thus, group effects were re-defined for use in animal models (Pollak & Quaas 1983; Famula, Pollak &

Van Vleck 1983).

Robinson (1986) re-defined group effects in the context of relatedness among all individuals (A) to reflect

differences in breeding values among unknown parents. This allowed the animal model to further account for

any selection that created differences in breeding values among unknown parents (Westell, Quaas & Van

Vleck 1988). Under this model, each individual’s group effect is the mean of its parents’ group effects which

ensures that similarities among individuals in group effects are consistent with relatedness. The contributions

of genetic group effects to any one individual are proportional to the contribution of that genetic group to

that individual’s genome based on ancestry. Each genetic group’s fractional contribution to each individual’s

genome can be calculated recursively from a pedigree and yields the matrix Q. Estimating genetic group

effects in a mixed model proceeds by fitting fixed covariate regressions of the fractional contributions from

each group to every individual’s genome (i.e., regressions on the columns of Q) along with estimating every

individual’s breeding value (i.e., fitting a random additive genetic effect of every individual with A−1).

Fitting a fixed regression on columns of Q, however, requires a post-analysis calculation to obtain

the predicted total additive genetic effects of each individual. It is the total additive genetic effect that

is of practical use in a selective breeding context. Therefore, Quaas & Pollak (1981) developed a method

to modify the mixed model equations to directly obtain the total additive genetic effects of individuals as

19

the solutions to the model equations in a sire model. Westell, Quaas & Van Vleck (1988) showed how a

similar transformation to that suggested by Quaas & Pollak (1981) could be used to transform the mixed

model equations of an animal model. Such transformation leads to the absorption of genetic group effects

into the vector of breeding values which produces predictions of total additive genetic effects directly from

solutions to the model equations. The model also provides estimates of the genetic group effects themselves.

The particular structure of these transformed equations, however, provides an additional benefit in setting

up the model equations. The section of the transformed equations that deal with genetic group effects

and total additive genetic effects are simple functions of Q and A−1. Since both Q and A−1 trace the

flow of genes through a pedigree, this section of the transformed equations is a simple augmented inverse

relatedness matrix (A∗). The transformed equations are more efficiently set up by directly constructing and

providing the augmented inverse relatedness matrix (A∗) as opposed to constructing Q and A−1 first and

then mathematically deriving the products of their different combinations that make up the transformed

mixed model equations (Westell, Quaas & Van Vleck 1988; Quaas 1988). Constructing A∗ follows the

same basic rules as constructing A−1 directly from the pedigree. In practice, the average additive genetic

differences among groups (i.e., the genetic group effects) are then estimated by providing A∗ in the random

effect syntax of animal model software. The solutions to the genetic group effects are still conceptually fixed

effects, though they are returned by most animal model software programs in the vector of values associated

with the random effect of individual total additive genetic effects (Appendix S6). Quaas (1988) formally

demonstrated the equivalence between models that included genetic group effects by implementing either the

fixed covariate regression or random effects specification of A∗.

These basic genetic group methods have been extended to accommodate more complexities. First,

genetic groups have been defined for maternal genetic effects (Van Vleck 1990). It is thus possible to allow

the direct and maternal additive genetic effects to have different genetic groups (and hence different mean

genetic effects) to reflect selection acting differently on these two components (Cantet et al. 1992). Secondly,

Schaeffer (1991, 1994) has expanded the framework to include genetic group effects, conceptually, as random

effects. As random effects, genetic groups are assumed to have a normal distribution with expectation of zero

and a covariance model. Typically, random genetic group effects are modelled with a covariance structure of

Iσ2
g , implying zero covariances among groups. More practically, the work by Schaeffer demonstrates how to

remove potential dependencies among the group effects by simply making them random effects. This can be

achieved by adding 1 to the diagonal values in the group coefficients partition of A∗ (see further discussion

in Appendix S6.3.2). More recently, grouping methods have progressed such that individuals with missing

parents do not have to have their phantom parents assigned to a single group. In fuzzy classification of

20

genetic groups (Fikse 2009; Appendix S7), phantom parents are assigned to genetic groups with a probability

of membership in each group. These classification methods are a simple extension to the methods for setting

up Q and A∗, but they have yet to be widely implemented. Finally, Misztal et al. (2013) have shown how to

properly account for genetic group effects when fitting a combined genomic and pedigree derived relatedness

matrix in the animal model.

References: Appendix S5

Cantet, R.J.C., Fernando, R.L., Gianola, D. & Misztal, I. (1992) Genetic grouping for direct and maternal

effects with differential assignment of groups. Genetics, Selection, Evolution, 24, 211–223.

Famula, T.R., Pollak, E.J. & Van Vleck, L.D. (1983) Genetic groups in dairy sire evaluation under a selection

model. Journal of Dairy Science, 66, 927–934.

Fikse, F. (2009) Fuzzy classification of phantom parent groups in an animal model. Genetics, Selection,

Evolution, 41, 42–49.

Henderson, C.R. (1973) Sire evaluation and genetic trends. Journal of Animal Science, 1973, 10–41.

Lynch, M. & Walsh, B. (1998) Genetics and Analysis of Quantitative Traits. Sinauer Associates, Incorporated,

Sunderland, MA.

Misztal, I., Vitezica, Z.G., Legarra, A., Aguilar, I. & Swan, A.A. (2013) Unknown-parent groups in single-step

genomic evaluation. Journal of Animal Breeding and Genetics, 130, 252–258.

Mrode, R.A. (2005) Linear Models for the Prediction of Animal Breeding Values, 2nd ed. CABI Publishing,

Cambridge, MA.

Pollak, E.J. & Quaas, R.L. (1983) Definition of group effects in sire evaluation models. Journal of Dairy

Science, 66, 1503–1509.

Quaas, R.L. (1988) Additive genetic model with groups and relationships. Journal of Dairy Science, 71,

1338–1345.

Quaas, R.L. & Pollak, E.J. (1981) Modified equations for sire models with groups. Journal of Dairy Science,

64, 1868–1872.

Robinson, G.K. (1986) Group effects and computing strategies for models for estimating breeding values.

Journal of Dairy Science, 69, 3106–3111.

21

Schaeffer, L.R. (1991) C. R. Henderson: Contributions to predicting genetic merit. Journal of Dairy Science,

74, 4052–4066.

Schaeffer, L.R. (1994) Multiple-country comparison of dairy sires. Journal of Dairy Science, 77, 2671–2678.

Van Vleck, L.D. (1990) Breeding value prediction with maternal genetic groups. Journal of Animal Science,

68, 3998–4013.

Westell, R.A., Quaas, R.L. & Van Vleck, L.D. (1988) Genetic groups in an animal model. Journal of Dairy

Science, 71, 1310–1318.

22

Appendix S6: Construction and implementation of Q and A*

Fitting animal models with genetic groups first necessitates formulating the appropriate Q and/or A∗ matrices.

First, we generally describe how Q and A∗ are formed, with an emphasis on the code used to do this in the

R package nadiv (>v2.14.0; Wolak 2012). This is followed by explanations of minor changes that can be

made to A∗ to improve animal model convergence and how to deal with warnings from software regarding

singularities and non-positive definite matrices. Next are sections with code that illustrate fitting genetic

group animal models in the MCMCglmm and asreml packages in R, the ASReml standalone program, and

finally the WOMBAT standalone program. In each of these four sections, code and examples are provided

to fit genetic groups using the nadiv package in R to create the Q and A∗ matrices that can then be supplied

to these animal model fitting programs (in some cases outside of the R environment), followed by examples

using existing functionality within each software program (see Table S6.1 for a summary of these programs

and their capabilities).

The tutorials for these software programs all use the simulated dataset (ggTutorial available in nadiv

or to download in WOMBAT and ASReml standalone formats) depicted in Figs 2 and 4 of the main text

and described below. In Appendix S4, the R code in the nadiv function simGG() that is used to simulate the

ggTutorial dataset is explained. Details of package and software program versions are available at the end

of the supporting information.

23

Table S6.1. Overview of animal model software highlighted in the tutorials. The genetic group capabilities row contains a description of the

functionality that is available solely within each software program. The Form Q and Form A∗ rows indicate if each program can create the Q or A∗

matrices, respectively, from a supplied pedigree. We indicate whether fitting genetic groups explicitly (as fixed effects) or implicitly within the random

effects structure (as either fixed or random effects) is recommended (+) or not (-) when using each software program.

MCMCglmm ASReml in R ASReml WOMBAT
Genetic group capabilities None in MCMCglmm,

but can use A*
or Q created with
nadiv

The
asreml.Ainverse()
function creates A*

The !GROUPS qualifier
to the pedigree creates
A* and see the !LAST
and !GOFFSET qualifiers
(details below)

Random genetic group effects (with
separate variance component from
the additive genetic variance) by
including GENGROUPS in a SPECIAL
block with a supplied Q (created
with nadiv)

Form Q No No No No
Form A* No Yes Yes No
Explicit approach + + + +
Implicit approach

Fixed - + + -
Random + + + +

Free to use Yes No No Yes
Reference Hadfield 2010 Butler et al. 2009 Gilmour et al. 2014 Meyer 2007

24

6.1 A small example pedigree

Below we demonstrate how the matrices Q and A∗ are constructed using an example pedigree from Quaas

(1988). A detailed version of the Quaas pedigree is available in the nadiv package in R as the Q1988 dataset:

id dam sire damGG sireGG phantomDam phantomSire group

g1 NA NA NA NA NA NA NA

g2 NA NA NA NA NA NA NA

a NA NA g1 g1 NA NA g1

b NA NA g2 g2 NA NA g2

c NA NA g2 g2 NA NA g2

d NA NA g1 g1 NA NA g1

e NA NA g2 g2 NA NA g2

A NA NA g1 g2 a b NA

B A NA A g2 A c NA

C NA NA g1 g2 d e NA

D B C B C B C NA

The table above is essentially just a pedigree (first three columns indicate an individual’s unique

identifying code, dam, and sire). However, two rows have been added at the top of the pedigree for the

unique genetic groups and extra columns are included for ease of using all possible pedigree formats accepted

by the nadiv functions that implement genetic group methods.

In the dataset, “g1” and “g2” are two genetic groups, lower case letters are phantom parent identities,

and upper case letters are observed individual identities. The genetic groups and phantom parents are

assigned as in Quaas (1988). Additional details regarding the Q1988 dataset in nadiv are in the R help file

that can be viewed by running the command ?Q1988 in an R session.

Below, we will only deal with observed individuals in this dataset, such that the subset of Q1988 we

will use is:

Q1988sub <- Q1988[-c(3:7), c("id", "damGG", "sireGG")]

25

id damGG sireGG

g1 NA NA

g2 NA NA

A g1 g2

B A g2

C g1 g2

D B C

Note, this is not the only format for including genetic group information in functions of the nadiv

package. To see a full description of alternative formats see the function help files, particularly for the

ggcontrib (to make Q) and makeAinv (to make A∗) functions.

6.2 Constructing Q

As described in the main text, the matrix Q contains the fractional contributions from each of r genetic

groups to each individual’s genome, calcluated from the pedigree (see also Robinson 1986; Mrode 2005, ch. 2).

Therefore, if there are n individuals in the pedigree (e.g., n=4 in Q1988sub), Q will be an n row by r column

matrix. In Henderson’s (1976) decomposition of the numerator relationship matrix (A=TDT’), the lower

triangle matrix T reflects the contribution of each individual in the pedigree to every other individual. In

other words, T traces the flow of genes from one generation to another. Therefore, if we add the r genetic

groups to the top of the pedigree (originally of length n) as identities with unknown dam and sire (NA) and

fill in genetic group labels as dam and sire identities of every individual with a missing parent (such as how

Q1988sub is arranged) we can obtain the T matrix for a pedigree of length n+r. The first r columns of the

T matrix contain the fractional contributions from each genetic group. Therefore, Q for the n individuals in

a pedigree is the r+1 to r+n rows and the first r columns of T.

The nadiv function ggcontrib() constructs Q for a given pedigree with r potential genetic group

contributions to each of the n individuals in the pedigree. For example, Q for Q1988sub is obtained:

(Q <- ggcontrib(Q1988sub))

g1 g2

A 0.500 0.500

26

B 0.250 0.750

C 0.500 0.500

D 0.375 0.625

Each row in Q (each entry is a proportional contribution) sums to one and offspring inherit half of each

genetic group contribution from each of their parents. Individuals A and C in Q1988sub each have a phantom

dam from genetic group “g1” and phantom sire from genetic group “g2”. These individuals correspond to the

first and third rows of Q above. As expected, the two genetic groups (each column in Q) contribute equally

to the genomes of A and C.

Individual B has observed dam A and a phantom sire from genetic group “g2”. Row two of Q above

is a sum of each parents’ row (genetic group contributions) divided by two: dam A [0.500 0.500]/2 plus

phantom sire “g2” [0.000 1.000]/2. In other words, individual B gets half of dam A’s “g1” group contribution

(0.500/2) and its phantom sire from “g2” does not contribute to the proportion of B’s genome derived from

“g1”. Similarly, individual B gets half of dam A’s “g2” group contribution (0.500/2) plus half of the phantom

sire “g2” contribution (1.000/2).

Finally, individual D has observed dam B and observed sire C. Therefore, row four of Q above is the

sum of each parents’ row (genetic group contributions) divided by two: dam B [0.250 0.750]/2 plus sire C

[0.500 0.500]/2.

Implementing an animal model with genetic group effects fitted explicitly as separate fixed regressions

requires the Q matrix. Because every row of Q sums to one, it is not possible to solve an animal model to

obtain estimates for every genetic group effect and an overall model intercept. Thus, genetic group effects

are not estimable themselves, but can only be estimated when expressed as deviations (or functions) from

other group effects (Lynch & Walsh 1998, p.839-841). Therefore, a column/genetic group is chosen as the

“reference group” and is assigned a genetic group effect of 0 (see practical implementation of this below). All

other group effects will represent deviations from this reference group. For example, we might choose genetic

group “g1” in the Q1988sub pedigree as our reference group. The estimate of the fixed regression slope from

the second column of Q equals the “g2” genetic group mean expressed as a deviation from the reference

group (“g1”) mean of zero. If we had used a pedigree with more than two genetic groups, still setting the

first group as the reference, then the genetic group estimates for each group are all deviations from the “g1”

reference group mean of zero.

Q is also needed to calculate breeding values (a) from an animal model that has fitted fixed genetic

group effects implicitly within the random effects syntax of the model software. This is because such a model

27

will yield predictions of total additive genetic effects (u). From equation (6) in the main text, an individual’s

breeding value (ai) equals the total additive genetic effect (ui) minus a weighted sum of genetic group effects

contributing to that individual. The weighted sum of genetic group contributions for all individuals can be

calculated as the matrix product Qg, where g is a vector of all genetic group effects and Q is calculated

above.

6.3 Constructing A*

A major advance leading to the widespread use of animal models comes from Henderson (1976) and subsequent

researchers’ (e.g., Quaas 1976, 1995; Meuwissen and Luo 1992) work to directly construct the matrix inverse

of the additive genetic relatedness matrix (A−1). Direct methods for obtaining A−1 are necessary, because

A−1 and not A is used when solving the equations in the animal model. A−1 has a unique structure that

can be formed by tracing the flow of alleles from each individual to its offspring. Thus methods to directly

construct A−1 rely on the basic premise that the flow of alleles through a pedigree can be traced because

each individual inherits, on average, half of its alleles from each parent with some sampling variation that

can be modeled based on the Mendelian sampling variance in the population.

To estimate genetic group effects by implicitly fitting the genetic groups within the random effect syntax

of the model software, requires an inverse matrix to model the covariance among individual total additive

genetic values and group effects based on alleles shared identical by descent. Conveniently, the matrix inverse

accounting for individual-individual, group-group, group-individual, and individual-group sharing of alleles

can be constructed directly from the pedigree in a very similar manner to A−1 (see also Appendix S5 ; Westell,

Quaas & Van Vleck 1988; Quaas 1988). This matrix, A∗ (following notation of Quaas 1988), is a compilation

of four sub-matrices that are each a mathematical function of Q, A−1, or both (Fig. 3e in main text).

The A∗ for any pedigree with genetic groups can be obtained using the makeAinv() function in the

nadiv package. For example, A∗ for the Q1988sub pedigree is:

AstarOut <- makeAinv(Q1988sub, ggroups = 2)

(Astar <- AstarOut$Ainv)

6 x 6 sparse Matrix of class "dgCMatrix"

##

A 1.3333333 -0.6666667 . . -0.5 -0.1666667

B -0.6666667 1.8333333 0.5 -1 . -0.6666667

28

C . 0.5000000 1.5 -1 -0.5 -0.5000000

D . -1.0000000 -1.0 2 . .

g1 -0.5000000 . -0.5 . 0.5 0.5000000

g2 -0.1666667 -0.6666667 -0.5 . 0.5 0.8333333

There are several points to highlight regarding A∗. First, this matrix can be split into four blocks:

(1) the upper-left 4-by-4 (nxn) block (individual-individual covariance structure), (2) the lower-left 2-by-4

(rxn) block (group-individual covariance structure), (3) the upper-right 4-by-2 (nxr) block (individual-group

covariance structure), and (4) the lower-right 2-by-2 (rxr) block (group-group covariance structure). Note,

the upper-left block of A∗ is the same as the A−1 for the Q1988 pedigree without implicitly including genetic

group effects (see also Fig. 3e in main text). For example, A−1 for the Q1988 pedigree without genetic groups

can be obtained and compared to A∗ above using the same nadiv function without invoking the genetic

group algorithm [makeAinv(..., ggroups = NULL, ...), the default value of the ggroups argument]:

makeAinv(Q1988[-c(1:7), c("id", "dam", "sire")])$Ainv

4 x 4 sparse Matrix of class "dgCMatrix"

##

A 1.3333333 -0.6666667 . .

B -0.6666667 1.8333333 0.5 -1

C . 0.5000000 1.5 -1

D . -1.0000000 -1.0 2

A∗ constructed in nadiv can be used in various animal model software programs (Table S6.1) to

implicitly include genetic group effects within the random effects structure of the model. Although the details

vary among software programs (see tutorials in the subsections to Appendix S6.4 for detailed instructions

in each of the highlighted software programs), the general approach is to associate the inverse covariance

matrix A∗ with the term in the model representing additive genetic effects; almost exactly the same way as

the typical A−1 is associated with additive genetic effects in a basic animal model. However, some potential

alterations to A∗ should be considered before and during the model fitting process.

6.3.1 Genetic groups on top or bottom of A*?

The entries in A∗ corresponding to genetic groups can be placed in the last r rows and columns (as above)

or the first r rows and columns. When setting up A∗, switching between these placements is trivial. The

29

consequences for using A∗, however, can be rather large. Solving an animal model requires solving a large

set of equations (the Mixed Model Equations or MME). Often, some of these equations may not be unique

or in other words two equations may be exactly the same, very similar, or have a linear dependency (such

that knowing the solution to one equation means the solution to the other equation is also known). This is a

cause of singularities in the MME coefficient matrix of an animal model.

The MME are solved by either moving from the first set of equations to the last set (‘top-down’) or

from the last set to the first set (‘bottom-up’). In either case, if two equations are nearly the same then the

model will obtain a solution for the first of the pair, but then encounter a problem with the second. Some

software packages might automatically deal with this second, non-unique equation. For example, ASReml

solves the equations from the bottom up and will delete the second equation (equation on top) to continue to

solve the MME (Butler et al. 2009, pp. 134-135; Gilmour et al. 2014, pp. 106-107).

Unfortunately, the algorithms to solve the MME are not this simple in practice. Even though ASReml

states which way the equations are solved, some options allow the program to re-order the equations to

simplify solving the model. This re-ordering is based on the contents of each equation without respect to

its categorization in the model. In other words, one genetic group equation might be re-ordered so that it

is placed next to an equation for a year random effect level while another genetic group equation in the

same model may be placed elsewhere with a random effect of individual additive genetic value. Although

one cannot be completely certain where the genetic group equations will end up when the software program

optimizes the order of equations to most efficiently solve the model, the ability to easily switch where in A∗

the genetic groups are positioned has been a strategy that has sometimes worked well in our own personal

experience. Switching the placement of the genetic groups from the top to the bottom (or vice versa) of A∗

has sometimes solved convergence issues.

However, the standalone version of ASReml has the !LAST job qualifier (see Table S6.1 and the

ASReml tutorial in Appendix S6.4.4) to consistently re-order the MME such that the genetic groups

equations are solved last. This option assumes that the genetic groups are the first r rows and columns of

A∗, where r is the number of levels following the !LAST qualifier, and therefore ‘on top’. We are not aware of

a similar argument that can be implemented for a model using asreml in R.

WOMBAT, also, has several MME ordering strategies that can be implemented. However, these

re-order the entire set of equations and the order of certain levels of random effects cannot be specified (Meyer

2007, section 5.3.1). MCMCglmm re-orders the MME according to algorithms associated with the underlying

CSparse functions (Davis 2006; Hadfield 2010) and also cannot designate certain levels of random effects to a

certain location in the re-ordered equations. Therefore, it is not clear how specifying genetic groups at the

30

top or bottom of A∗ will affect the convergence of any particular model.

The nadiv function makeAinv(), enables the user to place genetic groups at the top or bottom of A∗,

in an attempt to solve genetic group equations first or last. Therefore, if any singularities in the MME

coefficient matrix occur then the user can attempt to re-order the genetic group equations in the hope that

this will lead to model convergence. The gOnTop argument to the makeAinv() function switches between

placing the genetic groups on top or on bottom of A∗, with the default to place genetic groups at the bottom

of A∗ [makeAinv(..., gOnTop = FALSE, ...)].

6.3.2 Removing singularities and other problems within A*

Fitting genetic group effects implicitly often causes singularities in the coefficient matrix of the MME, that

can sometimes be overcome by slight changes to the strategy for grouping (Schaeffer 1991). Software programs

may report this issue as a non-positive definite generalized inverse matrix (often abbreviated GIV, GIN, or

ginverse), or alternatively stating that a GIV/GIN/ginverse is negative definite, non-positive semi-definite,

or ill-conditioned. For example, ASReml often deals with these types of singularities according to its own

strategies (Butler et al. 2009; Gilmour et al. 2014). If genetic groups are specified in an ASReml analysis

and a singularity occurs the program will introduce a row to the matrix to overcome this (see Lagrangian

multipliers in Gilmour et al. 2014, pp. 164-165). Regardless of which software program is used, however,

adding values to some of the matrix elements may also remove singularities occurring within the MME in

addition to the aforementioned strategy of ordering A∗ with genetic groups either on top or at the bottom.

Adding a small number to some diagonals can remove singularities (Schaeffer 1994, 1999; Oikawa

and Yasuda 2009; Gilmour 2010). Schaeffer (1994, 1999) advocates adding an identity matrix to the rxr

group-group block of A∗ such that all of the diagonals (dii) become 1 + dii. This addition to A∗ means

that the genetic group effects are no longer, conceptually speaking, fixed effects but are random effects with

expectations of zero and a variance describing their distribution (see Appendices S1 & S5). Further, predicted

genetic group effects will be biased toward the expected value of zero when genetic groups are random effects,

just like any other random effects, with the amount of bias depending on how much information the data

provide to predict genetic group effects (Hadfield et al. 2010). This bias will extend to any functions involving

the predicted genetic group effects, specifically the predicted total additive genetic effects (u). Although, in

many cases the mixed model equations and subsequent variance component estimates change only slightly,

thus basic interpretations of results will remain the same (but see cautionary note below; further discussion

in Schaeffer 1994). The strategy of adding an identity matrix is desirable if there are many individuals

assigned to each group, because it does not re-rank the predicted breeding values and can improve convergence

31

(Schaeffer 1994). The main change to the model when the leading diagonal elements of the group-group

portion of A∗ are altered is a (co)variance matrix for traits within groups is added to the model equations

dealing with the genetic group effects. In the simple case of a single trait, this variance is assumed to be the

same across group effects with no covariances between groups (i.e., groups effects are normally distributed

with a variance of Iσ2
g). In practice this variance is often assumed to equal the additive genetic variance for

the individual total additive genetic effects (Sullivan 1999, see also WOMBAT’s genetic groups in Appendix

S6.4.5.4).

A further interpretation of this assumption means that a model’s estimate of additive genetic variance

will also include the magnitudes of the genetic group effects. This may cause problems if the variance in

the genetic group effects themselves is much greater than the true additive genetic variance. In such a case,

adding a smaller value than 1 to the diagonals (dii) of A∗ structures the model to reflect this difference.

Using values other than 1 for the addition to the diagonal elements effectively means that the ratio of the

variance among genetic group effects to the additive genetic variance is no longer constrained to be 1:1. Thus,

when modelling genetic groups as random effects we strongly caution users to carefully consider the sensitivity

of the additive genetic variance estimate to the choice of value added to the group-group diagonal elements of

A∗. Multiple models fitted with different values added to the diagonal elements are recommended to ensure

an unbiased estimate of the additive genetic variance. Schaeffer (1994) provides a detailed discussion and

interpretation of different strategies for altering A∗.

Note that WOMBAT fits a separate variance component to the genetic group effects (see Appendix

S6.4.5.4), thus offering a direct way to check that the variance in genetic group effects can be assumed

to be the same as the additive genetic variance. ASReml provides the !GOFFSET pedigree file qualifier to

add a value to the group-group diagonal elements when using ASReml’s !GROUPS pedigree qualifier (see

Appendix S6.4.4.4). Otherwise, this alteration of A∗ is easily accomplished manually after creating A∗ with

the makeAinv() function in the nadiv package. Altering the A∗ for the Q1988sub pedigree above (with

genetic groups on the bottom) would proceed as follows and result in the matrix displayed below:

n <- 4

r <- 2

(ggIdentity <- bdiag(Diagonal(n = n, x = 0), Diagonal(n = r, x = 1)))

6 x 6 sparse Matrix of class "dtCMatrix"

##

[1,] 0

32

[2,] . 0

[3,] . . 0 . . .

[4,] . . . 0 . .

[5,] 1 .

[6,] 1

(AstarI <- Astar + ggIdentity)

6 x 6 sparse Matrix of class "dgCMatrix"

##

A 1.3333333 -0.6666667 . . -0.5 -0.1666667

B -0.6666667 1.8333333 0.5 -1 . -0.6666667

C . 0.5000000 1.5 -1 -0.5 -0.5000000

D . -1.0000000 -1.0 2 . .

g1 -0.5000000 . -0.5 . 1.5 0.5000000

g2 -0.1666667 -0.6666667 -0.5 . 0.5 1.8333333

Caution is necessary, however, when dealing with singularities in an animal model. Specifically, model

comparison may not be possible if singularities occur. ASReml alters the order of equations to remove

singularities. Consequently, different terms can cause singularities between runs of the model, where the

model may have been slightly modified for the purposes of testing the significance of variance components or

computing profile likelihoods of variance components. Singularities caused by different terms will affect the

log-likelihood of the model and therefore procedures using likelihood ratio test statistics may no longer be

valid (Gilmour 2005; Butler et al. 2009; Gilmour et al. 2014)

6.4 How to fit genetic groups in MCMCglmm, ASReml-R, ASReml-standalone,

& WOMBAT

6.4.1 Tutorial dataset ggTutorial

We provide a step-by-step demonstration of how to fit genetic groups in animal models, by modelling genetic

group effects either explicitly as separate fixed regressions or implicitly within the random effects, using

the different animal model software programs. All demonstrations use the dataset ggTutorial, which is

available in the nadiv package for working in R, as supplementary file ggTutorial.dat for working in the

33

standalone ASReml program, and as supplementary file ggTutorial.d for working in the WOMBAT

program. This dataset was simulated using the nadiv package (details in Appendix S4) and are the same

data as those depicted in Figs 2 and 4 from the main text. The dataset contains 6000 individuals across 15

generations. The simulation specifies a carrying capacity of 400 individuals per generation, 200 mating pairs

per generation, and 40 immigrants per generation. The expected difference between founder and immigrant

mean breeding values equals 3 and both the environmental and additive genetic variances for both the founder

and immigrant groups equal 1. The data are loaded into R by loading the nadiv package.

library(nadiv)

The first three columns of ggTutorial contain the complete pedigree and all 6000 individuals have a

phenotypic record in p.

head(ggTutorial)

id dam sire parAvgU mendel u r p is gen

1 1 NA NA NA NA -0.3928101 -0.08355464 19.52364 0 1

2 2 NA NA NA NA -0.6750007 0.14201698 19.46702 0 1

3 3 NA NA NA NA -0.4416978 1.89195823 21.45026 0 1

4 4 NA NA NA NA -1.0299707 -1.29820650 17.67182 0 1

5 5 NA NA NA NA -1.9126222 0.46681834 18.55420 0 1

6 6 NA NA NA NA -0.9089290 -0.82577884 18.26529 0 1

str(ggTutorial)

'data.frame': 6000 obs. of 10 variables:

$ id : int 1 2 3 4 5 6 7 8 9 10 ...

$ dam : int NA NA NA NA NA NA NA NA NA NA ...

$ sire : int NA NA NA NA NA NA NA NA NA NA ...

$ parAvgU: num NA NA NA NA NA NA NA NA NA NA ...

$ mendel : num NA NA NA NA NA NA NA NA NA NA ...

$ u : num -0.393 -0.675 -0.442 -1.03 -1.913 ...

$ r : num -0.0836 0.142 1.892 -1.2982 0.4668 ...

$ p : num 19.5 19.5 21.5 17.7 18.6 ...

34

$ is : int 0 0 0 0 0 0 0 0 0 0 ...

$ gen : int 1 1 1 1 1 1 1 1 1 1 ...

The rest of the columns contain:

• parAvgU is the average u (total additive genetic effect) of each individual’s parents

• mendel is the Mendelian sampling deviation from the mid-parent value that is unique to each individual

• u is the total additive genetic effect of each individual’s genotype

• r is the residual deviation of each individual

• p is the phenotype for each individual (population expected mean is 20)

• is indicates the immigration status, where focal population residents have is == 0 and immigrants

have is == 1

• gen is the generation in which each individual was born

The supplementary files for use in ASReml and WOMBAT contain a subset of these variables plus

three derived variables. The ASReml and WOMBAT data files contain continuous variables for the

coefficient of inbreeding (f) and two genetic group genomic contributions (from Q). For demonstration

purposes, these are added to the basic ggTutorial below within each section. Note the WOMBAT pedigree

and data files have had 10000 added to the individual identity codes to comply with WOMBAT data

structure requirements.

It is necessary to fit a fixed regression on the coefficient of inbreeding (f) to account for inbreeding

depression and minimize bias in estimates of quantitative genetic parameters (Kennedy, Schaeffer & Sorensen

1988; Reid & Keller 2010; Wolak & Keller 2014). This is not directly part of the process to fit genetic groups

in the animal model, but it is considered necessary when fitting animal models to population data in which

inbreeding occurs.

6.4.2 MCMCglmm

Modelling genetic groups either explicitly as separate fixed regressions or implicitly within the random effects

syntax of MCMCglmm requires either Q or A∗ to be created using the nadiv package. Below we demonstrate

how to create these matrices and fit each in a MCMCglmm model.

35

library(MCMCglmm)

library(nadiv)

To complete the basic preparations of the data for an animal model, all that is necessary is to calculate the

coefficients of inbreeding (f ; to minimize bias from inbreeding depression, see the last paragraph of Appendix

6.4.1 above). This calculation can be done using the inverseA() function of MCMCglmm. Consequently, the

A−1 matrix is also created, which we will assign as its own object in R, because it will be needed in the

model fitting genetic group effects explicitly as fixed covariate regressions with Q (see Appendix 6.4.2.2).

ainvOut <- inverseA(ggTutorial[, 1:3])

Ainv <- ainvOut$Ainv

ggTutorial$f <- ainvOut$inbreeding

MCMCglmm facilitates modelling of non-Gaussian response variables, which has greatly extended the

application of animal models in evolutionary ecology to a range of non-Gaussian phenotypes. Fitting genetic

groups is no different when modelling non-Gaussian response variables. In such models, the genetic group

effects (fitted either explicitly as separate fixed regressions or implicitly within the random effects) are

estimated on the underlying latent scale.

6.4.2.1 Preparing a pedigree with genetic groups Here, we provide general instructions to prepare

pedigrees. Calculating the matrix of genetic group contributions (Q) and the augmented inverse relatedness

matrix (A∗) requires a pedigree that indicates groups instead of missing values for parents. In the ggTutorial

data, we will assign all individuals with unknown parents in the first generation phantom parents from one

genetic group (foc0). All individuals in subsequent generations that have unknown parents will be assigned

phantom parents from a second genetic group (g1). Alternatively, this second group could be further divided

into genetic groups based on generation. However, the data were simulated such that every immigrant has the

same expected mean breeding value, regardless of the generation in which the immigrant was born. Therefore,

we will stick to a total of two genetic groups (but, feel free to model more groups!).

First, create an object that will be the pedigree with genetic groups (ggPed).

ggPed <- ggTutorial[, c("id", "dam", "sire", "is", "gen")]

naPar <- which(is.na(ggPed[, 2]))

ggPed$GG <- rep("NA", nrow(ggPed))

36

'focal' genetic group = "foc0" and 'immigrant' = "g1"

obtained by pasting "foc" & "g" with immigrant status "0" or "1", respectively

ggPed$GG[naPar] <- as.character(ggPed$is[naPar])

ggPed$GG[ggPed$GG == "0"] <- paste0("foc", ggPed$GG[ggPed$GG == "0"])

ggPed$GG[ggPed$GG == "1"] <- paste0("g", ggPed$GG[ggPed$GG == "1"])

ggPed[naPar, 2:3] <- ggPed[naPar, "GG"]

Note, the approach and format of the pedigree above is different from the Q1988sub pedigree earlier -

mostly because the format here makes it easier to specify genetic groups in a pedigree for this particular

case, but partly to illustrate the flexibility of nadiv functions. To be more specific, the Q1988sub pedigree

contained two extra rows for the two genetic groups. The ggroups argument to makeAinv() supplied an

integer indicating how many rows at the begining of the pedigree contained genetic groups and not individuals.

However, in the ggPed above no extra rows are added to the pedigree, but in the next few sections the

character vector given to the ggroups argument in both ggcontrib() and makeAinv() specifies the name of

the unique genetic groups that have been filled in for individuals instead of missing dam and sire identities.

6.4.2.2 Fixed explicit genetic group effects with Q (from nadiv) Fitting genetic group effects

explicitly requires the columns of Q to be included as separate fixed covariate regressions. The code below

creates Q for the ggPed pedigree and adds the columns (foc0 and g1) as variables in ggTutorial so that

they can be included in a model.

Q <- ggcontrib(ggPed[, 1:3], ggroups = c("foc0", "g1"))

ggTutorial <- cbind(ggTutorial, Q)

str(ggTutorial)

'data.frame': 6000 obs. of 13 variables:

$ id : int 1 2 3 4 5 6 7 8 9 10 ...

$ dam : int NA NA NA NA NA NA NA NA NA NA ...

$ sire : int NA NA NA NA NA NA NA NA NA NA ...

$ parAvgU: num NA NA NA NA NA NA NA NA NA NA ...

$ mendel : num NA NA NA NA NA NA NA NA NA NA ...

$ u : num -0.393 -0.675 -0.442 -1.03 -1.913 ...

$ r : num -0.0836 0.142 1.892 -1.2982 0.4668 ...

37

$ p : num 19.5 19.5 21.5 17.7 18.6 ...

$ is : int 0 0 0 0 0 0 0 0 0 0 ...

$ gen : int 1 1 1 1 1 1 1 1 1 1 ...

$ f : num 0 0 0 0 0 0 0 0 0 0 ...

$ foc0 : num 1 1 1 1 1 1 1 1 1 1 ...

$ g1 : num 0 0 0 0 0 0 0 0 0 0 ...

An important point to make is that, because the pedigree and data for ggTutorial are in the same

dataframe, the genetic group coefficients from Q can be added directly to the data with ggTutorial <-

cbind(ggTutorial, Q) above. However, whenever a pedigree contains more individuals than the data (or

in a different order), an intermediate step is required. Specifically, since the Q matrix contains a row for

every individual in the pedigree, only the subset of rows in Q that correspond to phenotyped individuals in a

dataset should be extracted and ordered according to the identities in the data.

The fixed regressions on foc0 and g1 can be combined with the standard A−1 to specify an animal

model in MCMCglmm. Below, we write out the specification of the MCMCglmm default priors for the fixed effects

in the model. We recommend a normal prior distribution for each genetic group fixed regression coefficient

with a mean of 0 and a very large variance. Our fixed effect prior specification below has an element in mu

and V of prPE$B to correspond with the model’s: intercept, regression on the coefficient of inbreeding (f),

and regressions on the genetic group contributions (foc0 and g1). Because unique solutions to the model do

not exist (see discussion of estimability in Appendix S6.2) for the intercept, coefficient of inbreeding (f), and

genetic group effects (foc0 and g1), we fit the foc0 genetic group as the last fixed effect. This ensures that

the model sets foc0 as a reference group and estimates the g0 genetic group effect as a deviation from the

mean breeding value in the foc0 group. The model is written out below, and a saved version is available on

Dryad (Wolak & Reid 2016) as supporting information file “./MCMCglmm/ggRegMC.RData” so that it is

not necessary to re-run this model to examine the results.

Use diffuse normal priors (MCMCglmm defaults) for all fixed effects

Parameter expanded prior on additive genetic variance

Scaled F-dsitribution with numerator and denominator df=1

prPEexp <- list(B = list(mu = rep(0, 3), V = diag(3)*1e10),

R = list(V = 1, nu = 0.002),

G = list(G1 = list(V = 1, nu = 1, alpha.mu = 0, alpha.V = 1000)))

38

NOTE: the saved model could be loaded instead of running it below

load(file = "./MCMCglmm/ggRegMC.RData")

ggRegMC <- MCMCglmm(fixed = p ~ f + g1 + foc0,

random = ~ id,

ginverse = list(id = Ainv),

data = ggTutorial,

prior = prPEexp,

singular.ok = FALSE,

pr = TRUE,

nitt = 28000, burn = 3000, thin = 25)

The posterior distributions of genetic group effects are included in the Sol object along with the

posterior distributions of the other fixed effects. Note the software has dropped the foc0 group estimate in

this model, implying this is the reference group and the g1 genetic group effects is the estimated deviation

from the reference. To report the posterior modes and 95% limits of the highest posterior density:

with(ggRegMC, cbind(postMode = posterior.mode(Sol[, 1:3]),

HPDinterval(Sol[, 1:3])))

postMode lower upper

(Intercept) 19.7952878 19.664293 19.931933

f 0.3756279 -2.652013 4.529125

g1 3.1375194 2.941707 3.285130

The above posterior mode estimate of 3.138 agrees with the expected difference of 3 between the mean

breeding values of the immigrant group (3) and the founder population (0), specified in the simulation.

The posterior distribution of the breeding values (a) can be accessed from ggRegMC$Sol[, -c(1:3)].

Because the order of rows in Q matches the order of individual identities in ggTutorial, the posterior

distribution for the total additive genetic effects (u) can be calculated as (eqn 5 in main text):

Add 0 genetic group effect for the reference group 'foc0' to the 'g1' samples

regPost_gHat <- rbind(0, ggRegMC$Sol[, "g1"])

For the ith mcmc iteration that was saved, calculate 'u'

39

regPost_u <- as.mcmc(t(sapply(seq(nrow(ggRegMC$Sol)),

FUN = function(i){Q %*% regPost_gHat[, i] + ggRegMC$Sol[i, -c(1:3)]})))

6.4.2.3 Random implicit genetic group effects with A* (from nadiv) Fitting genetic group effects

implicitly within the random effects portion of the MCMCglmm model specification requires the augmented

inverse A matrix (A∗) to be supplied as a sparse matrix in the ginverse argument. The code below creates

A∗ for the ggPed pedigree using the makeAinv function in the nadiv package.

Astar <- makeAinv(ggPed[, 1:3], ggroups = c("foc0", "g1"), gOnTop = TRUE)$Ainv

In the above code, we directed makeAinv() to include the genetic groups on top (top-left block) of A∗

using the gOnTop = TRUE argument. At this point we could try fitting the model with this version of A∗ (i.e.,

Astar). However, the model returns an error that G-structure 1 is ill-conditioned. In other words,

A∗ has at least one eigenvalue that is either negative or zero. Re-defining the groupings can eliminate such

a singularity. However, removing the singularity in the matrix while maintaining the current groupings is

accomplished by adding a small value to the diagonal elements of the group-group portion of the matrix. Note

that such an addition changes the interpretation of the effects in the model, as discussed above (Appendix

6.3.2 as well as Appendix S5), now implying that the genetic group effects are random effects in the model.

Below, we add 0.1 to the diagonal element of the A∗ which will constrain the variance in genetic group effects

to be one tenth the additive genetic variance estimated by the model. A value of 0.1 may bias estimates

of additive genetic variance in models of other datasets. Therefore, we advise testing values other than 0.1

(e.g., 1 or 10) and comparing estimates from these alternative models. Note that a value of 1 constrains the

variance in genetic group effects to be equal to the additive genetic variance estimated by the model.

AstarAdd <- Astar

(ggrows <- match(c("foc0", "g1"), dimnames(AstarAdd)[[1]]))

[1] 1 2

diag(AstarAdd)[ggrows] <- diag(AstarAdd)[ggrows] + 0.1

Astar[1:3, 1:3]

3 x 3 sparse Matrix of class "dgCMatrix"

##

40

foc0 400 . -1

g1 . 520 .

1 -1 . 1

AstarAdd[1:3, 1:3]

3 x 3 sparse Matrix of class "dgCMatrix"

##

foc0 400.1 . -1

g1 . 520.1 .

1 -1.0 . 1

The AstarAdd sparse inverse matrix can now be associated with the individual identities (id) by

supplying it as an argument to ginverse in the MCMCglmm model. We specify the same default prior

distribution for the fixed effects below (i.e., the same ones as we wrote out in Appendix 6.4.2.2). The prior

distribution for the id term in the model is the prior used for the additive genetic variance and, in this case,

also the same prior for the variance of the genetic group effects. It is unclear how the prior specified for the

additive genetic variance will affect the estimate of the genetic group effects or even what prior is to be used

in this context. As usual with Bayesian analyses, we recommend priors that are framed within the context

of the data at hand, the model being fitted, and any a priori belief in the model parameters. Further we

suggest testing the sensitivity of any particular prior used for a given model and especially when genetic

group effects are treated as random effects by the model.

The model is written out below, but a saved version is available on Dryad (Wolak & Reid 2016) as

supporting information file “./MCMCglmm/ggAstarRandMC.RData” so that it is not necessary to re-run

this model to examine the results.

Parameter expanded prior on additive genetic variance

prPEimp <- list(B = list(mu = rep(0, 2), V = diag(2)*1e10),

R = list(V = 1, nu = 0.002),

G = list(G1 = list(V = 1, nu = 1, alpha.mu = 0, alpha.V = 1000)))

NOTE: the saved model could be loaded instead of running it below

load(file = "./MCMCglmm/ggAstarRandMC.RData")

ggAstarRandMC <- MCMCglmm(fixed = p ~ f,

41

random = ~ id,

ginverse = list(id = AstarAdd),

data = ggTutorial,

prior = prPEimp,

pr = TRUE,

nitt = 53000, burn = 3000, thin = 50)

Alternatively, the non-altered matrix Astar could be supplied to the ginverse argument of MCMCglmm

to see the types of warnings that led us to fit the model with the matrix AstarAdd.

The posterior distributions of genetic group effects are included in the Sol object (as long as pr = TRUE

in the model statement) along with the posterior distributions of the fixed effects. To report the posterior

modes and 95% limits of the highest posterior density:

with(ggAstarRandMC, cbind(postMode = posterior.mode(Sol[, 1:4]),

HPDinterval(Sol[, 1:4])))

postMode lower upper

(Intercept) 22.023119 16.604035 25.597429

f 1.348870 -2.842843 4.164732

id.foc0 -2.164536 -5.801390 3.099577

id.g1 0.786011 -2.742551 6.267101

Note that all fixed effects in this model are estimable and the model returns these estimates along with

predicting both of the genetic group effects. The genetic group predictions, themselves, are random effects

and thus are deviations from their expected value of 0. The posterior mode of differences between genetic

group predictions 3.107 (95% HPD interval:2.945, 3.277) agrees with the expected difference between the

mean breeding values of the immigrant group (3) and the founder population (0) that was specified in the

simulation.

The posterior distribution of the total additive genetic effects (u) can be accessed from

ggAstarRandMC$Sol[, -c(1:4)]. Because the order of rows in Q matches the order of individual

identities in ggTutorial, the posterior distribution for the breeding values (a) can be calculated as (eqn 6 in

main text):

42

AstarPost_gHat <- ggAstarRandMC$Sol[, 3:4]

For the ith mcmc iteration that was saved, calculate 'a'

Assuming Q has already been calculated as above

AstarPost_a <- as.mcmc(t(sapply(seq(nrow(ggAstarRandMC$Sol)),

FUN = function(i){ggAstarRandMC$Sol[i, -c(1:4)] -

Q %*% matrix(AstarPost_gHat[i,], ncol = 1)})))

6.4.3 ASReml in R

To model genetic group effects explicitly as separate fixed regressions in an animal model using the R package

asreml requires Q to be created using the nadiv package and then included in the asreml() model function.

Including genetic group effects implicitly within the random effects of an animal model in asreml() can

be done either using A∗ constructed with nadiv or with asreml::asreml.Ainverse(). All three of these

approaches will be demonstrated below using the simulated dataset ggTutorial:

library(asreml)

library(nadiv)

To complete the basic preparations of the data for an animal model, all that is necessary is to calculate the

coefficients of inbreeding (f ; to minimize bias from inbreeding depression, see the last paragraph of Appendix

6.4.1). This calculation can be done using the asreml.Ainverse() function of asreml. Consequently, the

A−1 matrix is also created, which we will assign as its own R object, because it will be needed in the model

fitting genetic group effects explicitly as separate fixed covariate regressions with Q below (Appendix 6.4.3.2).

ainvOut <- asreml.Ainverse(ggTutorial[, 1:3])

listAinv <- ainvOut$ginv

ggTutorial$f <- ainvOut$inbreeding

Have to also convert the 'id' variable to a factor for models below

ggTutorial$id <- as.factor(ggTutorial$id)

6.4.3.1 Preparing a pedigree with genetic groups Calculating the matrix of genetic group contribu-

tions (Q) and the augmented inverse relatedness matrix (A∗) requires a pedigree that has genetic groups

43

indicated instead of missing values for parents. In the ggTutorial data, we will assign all individuals with

unknown parents in the first generation phantom parents from one genetic group (foc0). All individuals in

subsequent generations that have unknown parents will be assigned phantom parents from a second genetic

group (g1). Alternatively, this second group could be further divided into genetic groups based on generation.

However, the data were simulated such that every immigrant has the same expected mean breeding value,

regardless of the generation in which it was born. Therefore, we will stick to a total of two genetic groups

(but, feel free to model more groups!).

First, create an object that will be the pedigree with genetic groups (ggPed).

ggPed <- ggTutorial[, c("id", "dam", "sire", "is", "gen")]

naPar <- which(is.na(ggPed[, 2]))

ggPed$GG <- rep("NA", nrow(ggPed))

'focal' genetic group = "foc0" and 'immigrant' = "g1"

obtained by pasting "foc" & "g" with immigrant status "0" or "1", respectively

ggPed$GG[naPar] <- as.character(ggPed$is[naPar])

ggPed$GG[ggPed$GG == "0"] <- paste0("foc", ggPed$GG[ggPed$GG == "0"])

ggPed$GG[ggPed$GG == "1"] <- paste0("g", ggPed$GG[ggPed$GG == "1"])

ggPed[naPar, 2:3] <- ggPed[naPar, "GG"]

Two rows need to be added for the genetic groups

Genetic groups will be given the missing value NA instead of parent identities

ggPed <- data.frame(id = c("foc0", "g1", as.character(ggPed$id)),

dam = c(NA, NA, as.character(ggPed$dam)),

sire = c(NA, NA, as.character(ggPed$sire)))

head(ggPed)

id dam sire

1 foc0 <NA> <NA>

2 g1 <NA> <NA>

3 1 foc0 foc0

4 2 foc0 foc0

5 3 foc0 foc0

6 4 foc0 foc0

Note that the nadiv function makeAinv() used to construct A∗ is more flexible than asreml’s

44

asreml.Ainverse() in the way pedigrees containing genetic groups can be formatted (for more detail

on makeAinv() formats, see the help file by running the command ?makeAinv in an R session - particularly

the examples at the end of the file - or the genetic group pedigree used above in the MCMCglmm tutorial). To

be more specific, the format required by asreml.Ainverse() is similar to the Q1988sub pedigree used earlier

in the tutorial (Appendix 6.1) which contains two extra rows for the two genetic groups.

6.4.3.2 Fixed explicit genetic group effects with Q (from nadiv) Fitting genetic group effects

explicitly in asreml requires the columns of Q to be included as separate fixed covariate regressions. The

code below creates Q for the ggPed pedigree and adds the columns (foc0 and g1) as variables in ggTutorial

so that they can be included in a model.

Q <- ggcontrib(ggPed)

ggTutorial <- cbind(ggTutorial, Q)

str(ggTutorial)

'data.frame': 6000 obs. of 13 variables:

$ id : Factor w/ 6000 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...

$ dam : int NA NA NA NA NA NA NA NA NA NA ...

$ sire : int NA NA NA NA NA NA NA NA NA NA ...

$ parAvgU: num NA NA NA NA NA NA NA NA NA NA ...

$ mendel : num NA NA NA NA NA NA NA NA NA NA ...

$ u : num -0.393 -0.675 -0.442 -1.03 -1.913 ...

$ r : num -0.0836 0.142 1.892 -1.2982 0.4668 ...

$ p : num 19.5 19.5 21.5 17.7 18.6 ...

$ is : int 0 0 0 0 0 0 0 0 0 0 ...

$ gen : int 1 1 1 1 1 1 1 1 1 1 ...

$ f : num 0 0 0 0 0 0 0 0 0 0 ...

$ foc0 : num 1 1 1 1 1 1 1 1 1 1 ...

$ g1 : num 0 0 0 0 0 0 0 0 0 0 ...

An important point to make is that, because the pedigree and data for ggTutorial have essentially

the same sizes and structures (only ggPed now has two extra rows for the genetic groups - but these will be

dropped automatically from Q by ggcontrib()), the genetic group coefficients from Q can be added directly

45

to the data with ggTutorial <- cbind(ggTutorial, Q) above. However, whenever a pedigree contains

more individuals than the data (or in a different order), an intermediate step is required. Specifically, since

the Q matrix contains a row for every individual in the pedigree, only the subset of rows in Q that correspond

to phenotyped individuals in a dataset should be extracted and ordered according to the identities in the

data.

The fixed regressions on foc0 and g1 can be combined with the standard A−1 to specify an animal

model in asreml(). Because unique solutions to the model do not exist (see discussion of estimability in

Appendix S6.2) for the intercept, coefficient of inbreeding (f), and genetic group effects (foc0 and g1), we fit

the foc0 genetic group as the last fixed effect. This ensures that the model sets foc0 as a reference group

and estimates the g0 genetic group effect as a deviation from the mean breeding value in the foc0 group.

ggRegASR <- asreml(fixed = p ~ f + g1 + foc0,

random = ~ ped(id),

ginverse = list(id = listAinv),

data = ggTutorial)

The estimates of the genetic group effects are included with the fixed effect estimates. Note the software

has set the foc0 group estimate to zero in this model, implying this is the reference group and the g1 genetic

group effect is the estimated deviation. The variance of the estimated genetic group effect (g1) is included

with the variances of the fixed effect estimates, which are reported on asreml’s underlying transformed scale.

To re-scale the variances of the fixed effects back to the phenotypic scale and report them as standard errors:

with(ggRegASR, cbind(Effect = coefficients$fixed,

seEffect = sqrt(vcoeff$fixed * sigma2)))

Effect seEffect

foc0 0.0000000 0.00000000

g1 3.1167796 0.08929429

f 0.6660162 1.83248941

(Intercept) 19.7976160 0.06579030

The above estimate of 3.117 agrees with the expected difference between mean breeding value in the

immigrant group (3) and the founder population (0) that was specified in the simulation.

46

The predicted breeding values (a) can be accessed from ggRegASR$coefficients$random. Because the

order of rows in Q matches the order of individual identities in ggTutorial, the total additive genetic effects

(u) can be calculated without any further manipulation as (eqn 5 in main text):

reg_gHat <- matrix(ggRegASR$coefficients$fixed[1:2], ncol = 1)

reg_u <- Q %*% reg_gHat + ggRegASR$coefficients$random

Note, if more individuals are in the pedigree than the dataset and/or the identities in the pedigree

and data are ordered differently, more coding is necessary to ensure that the predicted genetic effect for

a particular individual is added to the correct weighted genetic group contribution. Additionally, if more

random effects are included in the model, care has to be taken in order to ensure the correct random effect

predictions are extracted for the breeding values (a). The R function match() is particularly helpful in these

cases.

6.4.3.3 Fixed implicit genetic group effects with A* (from nadiv or asreml) Fitting fixed effects

of genetic groups implicity within the random effects of an animal model requires the augmented inverse

relatendess matrix (A∗) to be supplied as a list in the ginverse argument. First, we create the sparse matrix

of A∗ for the ggPed pedigree using the makeAinv function in the nadiv package and then demonstrate how

to obtain this same matrix with the asreml package.

listAstar <- makeAinv(ggPed, ggroups = 2, gOnTop = FALSE)$listAinv

In the above code, we directed makeAinv() to include the genetic groups on bottom (bottom-right

block) of A∗ using gOnTop = FALSE. This was done to improve model convergence (see Appendix 6.3 and its

subsections). In this case, the asreml model converges. In other pedigrees, models, and/or genetic group

classifications, if singularities occur then sometimes this can be overcome by adding one (or a small value) to

the diagonal elements of the group-group portion of the matrix (although see discussion of this in Appendix

S5 and cautions/considerations in Appendix 6.3.2). The alteration is demonstrated below along with cautions

and interpretations (Appendix 6.4.3.4). Note, the easiest approach is to adjust the genetic group diagonals of

A∗ using the matrix returned by makeAinv() (i.e., object Ainv in the list), then convert the matrix to the

list format required by asreml.

Alternatively, we can use asreml’s function asreml.Ainverse() to obtain a list format of A∗.

47

listAstar <- asreml.Ainverse(ggPed, groups = 2)$ginv

CAUTION: under the current and previous versions of asreml (current version at the end of Supporting

Information), quite often asreml.Ainverse() simply does not work. It will return an object with a ginv

entry that is a data.frame, but with zero rows. Sometimes, re-running the above command will work -

otherwise use nadiv’s makeAinv() (Appendix 6.4.3)! Note that in the above code, asreml.Ainverse()

includes the genetic groups on top (top-left block) of A∗. Often models fitting this structure of A∗ have

trouble converging due to this matrix not being positive-definite (see Appendix 6.3 and its subsections). One

strategy to remedy this is to place the genetic groups on the bottom of A∗. Since there is no easy option

to specify this in asreml.Ainverse() we recommend using nadiv’s function makeAinv() as demonstrated

above.

Regardless of which package was used to create listAstar, this sparse inverse matrix in list format has

two extra properties (‘attributes’) that are critical for being able to use it in an asreml model. First (and not

specific to just genetic group models), all asreml ginverse objects must have the “rowNames” attribute to

map row/column numbers back to the factor levels in the model variable. Second, specific to models fitting

fixed genetic groups implicitly within the random effects the listAstar object must have the “geneticGroups”

attribute where the first number indicates the number of unique genetic groups. This is essential for asreml

to correctly calculate the residual degrees of freedom as part of the residual variance and log-likelihood

calculations. These attributes are the last two rows of the internal object structure:

str(listAstar)

'data.frame': 19642 obs. of 3 variables:

$ row : int 1 2 3 4 5 6 7 8 9 10 ...

$ column: num 1 2 3 4 5 6 7 8 9 10 ...

$ Ainv : num 1 1.5 1 1 1.5 1 1 1 1 2 ...

- attr(*, "rowNames")= chr "1" "2" "3" "4" ...

- attr(*, "geneticGroups")= num 2 0

Both of these attributes are discussed in the help file to makeAinv() and can be accessed by typing

?makeAinv in R. Now the object listAstar can be associated with the individual identities (id) in the model

by supplying the list to the ginverse argument in the asreml() function.

48

ggAstarASR <- asreml(fixed = p ~ f,

random = ~ ped(id),

ginverse = list(id = listAstar),

data = ggTutorial)

The estimate of the genetic group effects are included with the random effect predictions. Since we

directed makeAinv() to position the genetic groups on the bottom of Astar, the genetic group effects are the

last two predicted values. The variance of the estimated genetic group effects are included with the variances

of the random effect predictions, which are reported on asreml’s underlying transformed scale. To re-scale

the variances of the fixed effects and genetic group effects back to the phenotypic scale and report these as

standard errors along with the estimates themselves:

find the location of the genetic groups

(ggrows <- match(c("foc0", "g1"), attr(listAstar, "rowNames")))

[1] 6001 6002

genetic group and fixed effects (with re-scaled standard errors)

with(ggAstarASR, cbind(Effect = c(coefficients$fixed, coefficients$random[ggrows]),

seEffect = sqrt(c(vcoeff$fixed, vcoeff$random[ggrows]) * sigma2)))

Effect seEffect

f 0.6660162 1.83248941

(Intercept) 0.0000000 0.00000000

ped(id)_foc0 19.7976160 0.06579030

ped(id)_g1 22.9143956 0.06008392

Note the software has set the intercept estimate to zero in this model (see discussion of estimability

in Appendix S6.2), implying this is the reference to which the foc0 and g1 genetic group effects are the

estimated deviations. Therefore, the predicted total additive genetic effects (u) include the overall phenotypic

mean. However, the difference between the genetic group effects 3.117 agrees with the expected difference

between the mean breeding values of the immigrant group (3) and the founder population (0) that was

specified in the simulation.

49

The predicted total additive genetic effects (u) can be accessed from ggAstarASR$coefficients$random[-ggrows].

Because the order of rows in Q matches the order of individual identities in ggTutorial, the breeding values

(a) can be calculated without any further manipulation as (eqn 6 in main text):

Astar_gHat <- matrix(ggAstarASR$coefficients$random[ggrows], ncol = 1)

Astar_a <- ggAstarASR$coefficients$random[-ggrows] - Q %*% Astar_gHat

Note, if more individuals are in the pedigree than the dataset and/or the identities in the pedigree

and data are ordered differently, more coding is necessary to ensure that the predicted genetic effect for

a particular individual is added to the correct weighted genetic group contribution. Additionally, if more

random effects are included in the model, care has to be taken in order to ensure the correct random effect

predictions are extracted for the total additive genetic effects (u) and used to calculate breeding values (a).

The R function match() is particularly helpful in these cases.

6.4.3.4 Random implicit genetic group effects with A* (from nadiv) Fitting random effects of

genetic groups implicity within the random effects of an animal model requires the augmented inverse

relatendess matrix (A∗) to be supplied as a list in the ginverse argument. First, we create the sparse matrix

of A∗ for the ggPed pedigree using the makeAinv function in the nadiv package, then make the necessary

alterations (see discussion of this in Appendix S5 and cautions/considerations in Appendix 6.3.2) so the

model interprets the genetic groups as random effects, convert the sparse matrix to a list, and fit the model.

Astar <- makeAinv(ggPed, ggroups = 2, gOnTop = FALSE)$Ainv

In the above code, we directed makeAinv() to include the genetic groups on bottom (bottom-right

block) of A∗ using gOnTop = FALSE. This was done to improve model convergence (see Appendix 6.3 and its

subsections).

Next we add a small value to the diagonal elements of the group-group portion of the matrix taking

the same approach as in the MCMCglmm tutorial above (Appendix 6.4.2.3). As a result of this alteration, the

genetic group effects are conceptually random effects in the model. Below, we add 0.1 to the diagonal element

of the A∗ which will constrain the variance in genetic group effects to be one tenth the additive genetic

variance estimated by the model. A value of 0.1 may bias estimates of additive genetic variance in models of

other datasets. Therefore, we advise testing values other than 0.1 (e.g., 1 or 10) and comparing estimates

from these alternative models. Note that a value of 1 constrains the variance in genetic group effects to be

equal to the additive genetic variance estimated by the model.

50

The easiest approach is to adjust the genetic group diagonals of A∗, and this is why we stored the

matrix returned by makeAinv() above (i.e., object Ainv in the list). Once the additions are made, we can

then convert the matrix to the list format required by asreml.

AstarAdd <- Astar

(ggrows <- match(c("foc0", "g1"), dimnames(AstarAdd)[[1]]))

[1] 6001 6002

diag(AstarAdd)[ggrows] <- diag(AstarAdd)[ggrows] + 0.1

Astar[ggrows, ggrows]

2 x 2 sparse Matrix of class "dgCMatrix"

##

foc0 400 .

g1 . 520

AstarAdd[ggrows, ggrows]

2 x 2 sparse Matrix of class "dgCMatrix"

##

foc0 400.1 .

g1 . 520.1

convert to the list format using `nadiv::sm2list()`

listAstarAdd <- sm2list(AstarAdd, rownames = rownames(AstarAdd))

Should be NO "geneticGroups" attribute (or element 1 of this attribute must==0)

str(listAstarAdd)

'data.frame': 19642 obs. of 3 variables:

$ row : int 1 2 3 4 5 6 7 8 9 10 ...

$ column: num 1 2 3 4 5 6 7 8 9 10 ...

$ A : num 1 1.5 1 1 1.5 1 1 1 1 2 ...

- attr(*, "rowNames")= chr "1" "2" "3" "4" ...

51

The object listAstarAdd can be associated with the individual identities (id) in the model by supplying

the list to the ginverse argument in the asreml() function.

ggAstarRanASR <- asreml(fixed = p ~ f,

random = ~ ped(id),

ginverse = list(id = listAstarAdd),

data = ggTutorial)

The predictions of the genetic group effects are included with the random effect predictions. Since we

directed makeAinv() to position the genetic groups on the bottom of Astar, the genetic group effects are the

last two predicted values. The variance of the random effect predictions are reported on asreml’s underlying

transformed scale. To re-scale the variances of the genetic group predictions back to the phenotypic scale

and report these as standard errors along with the predictions themselves and the fixed effect estimates (for

comparison to other models):

find the location of the genetic groups

(ggrows <- match(c("foc0", "g1"), attr(listAstarAdd, "rowNames")))

[1] 6001 6002

genetic group and fixed effects (with re-scaled standard errors)

with(ggAstarRanASR, cbind(Effect = c(coefficients$fixed, coefficients$random[ggrows]),

seEffect = sqrt(c(vcoeff$fixed, vcoeff$random[ggrows]) * sigma2)))

Effect seEffect

f 0.6656207 1.832498

(Intercept) 21.3560577 2.320737

ped(id)_foc0 -1.5578210 2.320741

ped(id)_g1 1.5578209 2.320741

Note the intercept in this model is estimable and so the model returns this estimate along with predicting

both of the genetic group effects. The genetic group predictions, themselves, are random effects and thus are

deviations from their expected value of 0. The difference between the genetic groups 3.116 agrees with the

expected difference between the mean breeding values of the immigrant group (3) and the founder population

(0) that was specified in the simulation.

52

The predicted total additive genetic effects (u) can be accessed from ggAstarRanASR$coefficients$random[-ggrows].

Here, the prediced total additive genetic effects include the genetic group effects expressed as deviations from

0. Because the order of rows in Q matches the order of individual identities in ggTutorial, the breeding

values (a) can be calculated without any further manipulation as (eqn 6 in main text):

AstarRan_gHat <- matrix(ggAstarRanASR$coefficients$random[ggrows], ncol = 1)

AstarRan_a <- ggAstarRanASR$coefficients$random[-ggrows] - Q %*% AstarRan_gHat

Note, if more individuals are in the pedigree than the dataset and/or the identities in the pedigree

and data are ordered differently, more coding is necessary to ensure that the predicted genetic effect for

a particular individual is added to the correct weighted genetic group contribution. Additionally, if more

random effects are included in the model, care has to be taken in order to ensure the correct random effect

predictions are extracted for the total additive genetic effects (u) and used to calculate breeding values (a).

The R function match() is particularly helpful in these cases.

6.4.4 ASReml Standalone

Here we cover four approaches to fit genetic groups in an ASReml analysis. The first two use nadiv functions

in R to create Q and A∗, which are each separately included in ASReml models. The third approach

uses ASReml arguments and qualifiers to rely entirely upon the ASReml capabilities for fitting genetic

groups. Whereas the first three approaches are used to fit genetic groups as fixed effects, the final approach

demonstrates how to fit random effects of genetic groups.

The preparation of the ggTutorial data and requisite outputs from nadiv in R will first be demonstrated

before detailing the code used in the ASReml model fitting. However, the basic files necessary to fit the

ASReml models without any preparation in R are available in the accompanying supporting files on Dryad

(Wolak & Reid 2016). The content of these files is summarized as:

• ggTutorial.dat contains the ggTutorial data. This file contains space separated columns from a

subset of columns in the original data.frame in the following order: id, p, is, gen, f, foc0, and g1.

This is needed for all models fitted.

• reg.ped contains the pedigree and is analogous to the first three columns of ggTutorial. This is

needed to fit a model with genetic group effects explicitly as separate fixed regressions in the model.

53

• nadivAstar.giv and nadivAstar.txt are needed to fit genetic group effects implicitly within the

random effects of the model using nadiv’s makeAinv() in R to create A∗ (contained in nadivAstar.giv).

nadivAstar.txt provides the row names for nadivAstar.giv and is needed to associate levels in

nadivAstar.giv to identities in the data ggTutorial.dat. Further explanation is provided below

where these files are created.

• asremlGG.ped contains the genetic group pedigree. It is the same as reg.ped except two rows are

added for each of the two genetic groups and individuals do not have missing values, but genetic groups,

specified for missing dams and sires. This is needed to fit genetic group effects implicitly within the

random effects using ASReml’s own capabilities.

• ggReg.as, ggNadivAstarFxd.as, ggAsremlAstarFxd.as, and ggAsremlRan.as are included within

the folders with similar names. Each specifies a different model to run.

To prepare the data for an animal model, all that is necessary is to calculate the coefficients of inbreeding

(f ; to minimize bias from inbreeding depression, see the last paragraph of Appendix 6.4.1). This calculation

can be done using the makeAinv() function in the nadiv package.

library(nadiv)

ggTutorial$f <- makeAinv(ggTutorial[, 1:3])$f

6.4.4.1 Preparing a pedigree with genetic groups Calculating the matrix of genetic group contribu-

tions (Q) and the augmented inverse relatedness matrix (A∗) requires a pedigree that has genetic groups

indicated instead of missing values for parents. In the ggTutorial data, we will assign all individuals with

unknown parents in the first generation phantom parents from one genetic group (foc0). All individuals in

subsequent generations that have unknown parents will be assigned phantom parents from a second genetic

group (g1). Alternatively, this second group could be further divided into genetic groups based on generation.

However, the data were simulated such that every immigrant has the same expected mean breeding value,

regardless of the generation in which it was born. Therefore, we will stick to a total of two genetic groups

(but, feel free to model more groups!).

First, create an object that will be the pedigree with genetic groups (ggPed).

54

ggPed <- ggTutorial[, c("id", "dam", "sire", "is", "gen")]

naPar <- which(is.na(ggPed[, 2]))

ggPed$GG <- rep("NA", nrow(ggPed))

'focal' genetic group = "foc0" and 'immigrant' = "g1"

obtained by pasting "foc" & "g" with immigrant status "0" or "1", respectively

ggPed$GG[naPar] <- as.character(ggPed$is[naPar])

ggPed$GG[ggPed$GG == "0"] <- paste0("foc", ggPed$GG[ggPed$GG == "0"])

ggPed$GG[ggPed$GG == "1"] <- paste0("g", ggPed$GG[ggPed$GG == "1"])

ggPed[naPar, 2:3] <- ggPed[naPar, "GG"]

Two rows need to be added for the genetic groups

Genetic groups will be given the missing value 0 instead of parent identities

ggPed <- data.frame(id = c("foc0", "g1", as.character(ggPed$id)),

dam = c(0, 0, as.character(ggPed$dam)),

sire = c(0, 0, as.character(ggPed$sire)))

head(ggPed)

id dam sire

1 foc0 0 0

2 g1 0 0

3 1 foc0 foc0

4 2 foc0 foc0

5 3 foc0 foc0

6 4 foc0 foc0

6.4.4.2 Fixed explicit genetic group effects with Q (from nadiv) Fitting genetic group effects

explicitly requires the columns of Q to be included as separate fixed covariate regressions. The code below

creates Q for the ggPed pedigree.

Q <- ggcontrib(ggPed[, 1:3])

Warning in numPed(pedigree): Zero in the dam column interpreted as a

missing parent

Warning in numPed(pedigree): Zero in the sire column interpreted as a

55

missing parent

Note that the two warnings above (regarding zeroes being interpreted as missing dams/sires) are to be

expected and should not be cause for any concern in this particular pedigree/example.

Now we add the columns of Q (foc0 and g1) as variables in ggTutorial so that they can be included

in a model.

ggTutorial <- cbind(ggTutorial, Q)

str(ggTutorial)

'data.frame': 6000 obs. of 13 variables:

$ id : Factor w/ 6000 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...

$ dam : int NA NA NA NA NA NA NA NA NA NA ...

$ sire : int NA NA NA NA NA NA NA NA NA NA ...

$ parAvgU: num NA NA NA NA NA NA NA NA NA NA ...

$ mendel : num NA NA NA NA NA NA NA NA NA NA ...

$ u : num -0.393 -0.675 -0.442 -1.03 -1.913 ...

$ r : num -0.0836 0.142 1.892 -1.2982 0.4668 ...

$ p : num 19.5 19.5 21.5 17.7 18.6 ...

$ is : int 0 0 0 0 0 0 0 0 0 0 ...

$ gen : int 1 1 1 1 1 1 1 1 1 1 ...

$ f : num 0 0 0 0 0 0 0 0 0 0 ...

$ foc0 : num 1 1 1 1 1 1 1 1 1 1 ...

$ g1 : num 0 0 0 0 0 0 0 0 0 0 ...

An important point to make is that, because the pedigree and data for ggTutorial have essentially

the same sizes and structures (only ggPed now has two extra rows for the genetic groups - but these will be

dropped automatically from Q by ggcontrib()), the genetic group coefficients from Q can be added directly

to the data with ggTutorial <- cbind(ggTutorial, Q) above. However, whenever a pedigree contains

more individuals than the data (or in a different order), an intermediate step is required. Specifically, since

the Q matrix contains a row for every individual in the pedigree, only the subset of rows in Q that correspond

to phenotyped individuals in a dataset should be extracted and ordered according to the identities in the

data.

56

Now we need to write the pedigrees and portion of the data to files in formats that ASReml can use.

Note, ASReml expects pedigree columns ordered ID, Sire, Dam and we will use ‘0’ to denote missing values

(instead of NA).

regPed <- ggTutorial[, 1:3]

regPed[is.na(regPed[, 2]), 2] <- 0

regPed[is.na(regPed[, 3]), 3] <- 0

write.table(regPed[, c(1,3,2)], "./asreml/ggReg/reg.ped",

row.names = FALSE, quote = FALSE)

asData <- ggTutorial[, -c(2:7)]

write.table(asData, "./asreml/ggReg/ggTutorial.dat",

row.names = FALSE, quote = FALSE)

The fixed regressions on foc0 and g1 can be combined with the standard A−1 to specify an animal

model in ASReml (see also the “./asreml/ggReg” folder in the supporting files). Because unique solutions

to the model do not exist (see discussion of estimability in Appendix S6.2) for the intercept, coefficient of

inbreeding (f), and genetic group effects (foc0 and g1), we fit the foc0 genetic group as the last fixed effect.

This ensures that the model sets foc0 as a reference group and estimates the g0 genetic group effect as a

deviation from the mean breeding value in the foc0 group.

Fixed regression for Explicit genetic groups

id !P

p

is !I 0 1

gen 15

f

foc0

g1

reg.ped !ALPHA !SKIP 1 !MAKE !GIV !DIAG

ggTutorial.dat !SKIP 1

p ~ mu f g1 foc0 !r id

The estimate of the genetic group effects and standard errors are reported as the genetic group fixed

effect regression coefficients and standard errors in the “ggReg.sln” file. These can be read back into R:

57

regPred <- read.table("./asreml/ggReg/ggReg.sln", header = TRUE)

so that we can see the fixed effect estimates and their standard errors:

regPred[1:4,]

Model_Term Level Effect seEffect

1 foc0 1 0.000 0.00000

2 g1 1 3.117 0.08929

3 f 1 0.666 1.83200

4 mu 1 19.800 0.06579

Note the software has set the foc0 group estimate to zero in this model, implying this is the reference

group and the g1 genetic group effect is the estimated deviation from this reference. The above estimate of

3.117 agrees with the expected difference between mean breeding value in the immigrant group (3) and the

founder population (0) that was specified in the simulation.

The predicted breeding values (a) are also reported in the “ggReg.sln” file (see now R object regPred) and

follow below the fixed effect estimates. Because the order of rows inQ matches the order of individual identities

in ggTutorial, the total additive genetic effects (u) can be calculated without any further manipulation as

(eqn 5 in main text):

reg_gHat <- matrix(regPred[1:2, "Effect"], ncol = 1)

reg_u <- Q %*% reg_gHat + regPred[-c(1:4), "Effect"]

Note, if more individuals are in the pedigree than the dataset and/or the identities in the pedigree

and data are ordered differently, more coding is necessary to ensure that the predicted genetic effect for

a particular individual is added to the correct weighted genetic group contribution. Additionally, if more

random effects are included in the model, care has to be taken in order to ensure the correct random effect

predictions are extracted for the breeding values (a). The R function match() is particularly helpful in these

cases.

6.4.4.3 Fixed implicit genetic group effects with A* (from nadiv) Genetic group effects can be fit

implicitly within the random effects when the augmented inverse relatedness matrix A∗ has been supplied as

58

a list to ASReml. The code below creates A∗ for the ggPed pedigree and saves it as a list in the format

ASReml requires.

First, we will calculate Q and include it in the dataset for consistency with other versions of this data.

Q <- ggcontrib(ggPed[, 1:3])

Warning in numPed(pedigree): Zero in the dam column interpreted as a

missing parent

Warning in numPed(pedigree): Zero in the sire column interpreted as a

missing parent

Note that the two warnings above (regarding zeroes being interpreted as missing dams/sires) are to be

expected and should not be cause for any concern in this particular pedigree/example.

Add the columns of Q (foc0 and g1) as variables in ggTutorial.

ggTutorial <- cbind(ggTutorial, Q)

str(ggTutorial)

'data.frame': 6000 obs. of 13 variables:

$ id : Factor w/ 6000 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...

$ dam : int NA NA NA NA NA NA NA NA NA NA ...

$ sire : int NA NA NA NA NA NA NA NA NA NA ...

$ parAvgU: num NA NA NA NA NA NA NA NA NA NA ...

$ mendel : num NA NA NA NA NA NA NA NA NA NA ...

$ u : num -0.393 -0.675 -0.442 -1.03 -1.913 ...

$ r : num -0.0836 0.142 1.892 -1.2982 0.4668 ...

$ p : num 19.5 19.5 21.5 17.7 18.6 ...

$ is : int 0 0 0 0 0 0 0 0 0 0 ...

$ gen : int 1 1 1 1 1 1 1 1 1 1 ...

$ f : num 0 0 0 0 0 0 0 0 0 0 ...

$ foc0 : num 1 1 1 1 1 1 1 1 1 1 ...

$ g1 : num 0 0 0 0 0 0 0 0 0 0 ...

59

An important point to make is that, because the pedigree and data for ggTutorial have essentially

the same sizes and structures (only ggPed now has two extra rows for the genetic groups - but these will be

dropped automatically from Q by ggcontrib()), the genetic group coefficients from Q can be added directly

to the data with ggTutorial <- cbind(ggTutorial, Q) above. However, whenever a pedigree contains

more individuals than the data (or in a different order), an intermediate step is required. Specifically, since

the Q matrix contains a row for every individual in the pedigree, only the subset of rows in Q that correspond

to phenotyped individuals in a dataset should be extracted and ordered according to the identities in the

data.

Now we create the sparse matrix of A∗ for the ggPed pedigree using the makeAinv function in the

nadiv package.

listAstar <- makeAinv(ggPed, ggroups = 2, gOnTop = TRUE)$listAinv

In the above code, we directed makeAinv() to include the genetic groups on top (top-left block) of A∗

using gOnTop = TRUE. This is necessary so that ASReml solves the equations in an order that improves

model convergence (see Appendix 6.3 and its subsections). In this case, the ASReml model converges. In

other pedigrees, models, and/or genetic group classifications, if singularities occur then sometimes this can

be overcome by adding one (or a small value) to the diagonal elements of the group-group portion of the

matrix (although see discussion of this in Appendix S5 and cautions/considerations in Appendix 6.3.2). The

alteration is demonstrated above in the asreml tutorial along with cautions and interpretations (Appendix

6.4.3.4). The resulting list could then be given to the standalone ASReml program much the same as we do

here (see also Appendix 6.4.4.5). Note, the easiest approach is to adjust the genetic group diagonals of A∗

using the matrix returned by makeAinv() (i.e., object Ainv in the list), then convert the matrix to the list

format required by ASReml.

Now we need to write the data (ggTutorial) and list of the A∗ (listAstar) to a file for ASReml.

Further, we need to write to a file all of the identity codes in the pedigree that match to the rows and columns

in listAstar. This enables ASReml to match levels in the generalized inverse (row and column numbers of

listAstar) to observations in ggTutorial. Critically, we need to include the “geneticGroups” attribute of

listAstar as the first line in the file containing this list.

Write the nadiv Astar ginv list

write.table(listAstar,

file = "./asreml/ggNadivAstarFxd/nadivAstar.giv",

60

col.names = FALSE, row.names = FALSE)

fConn <- file("./asreml/ggNadivAstarFxd/nadivAstar.giv", "r+")

Lines <- readLines(fConn)

Add the !GROUPSDF *n* qualifier as the first line of the file

ngrps <- attr(listAstar, "geneticGroups")[1]

writeLines(c(paste0("!GROUPSDF ", ngrps), Lines), con = fConn)

close(fConn)

Create mapping between order of identities in listAstar and their unique codes

write.table(ggPed[, 1], file = "./asreml/ggNadivAstarFxd/nadivAstar.txt",

col.names = FALSE, row.names = FALSE, quote = FALSE)

Write the data

asData <- ggTutorial[, -c(2:7)]

write.table(asData, "./asreml/ggNadivAstarFxd/ggTutorial.dat",

row.names = FALSE, quote = FALSE)

Now we can run the animal model in ASReml using the supplied general inverse matrix listAstar in

the file “nadivAstar.giv” (see also the “./asreml/ggNadivAstarFxd” folder in the supporting files):

nadiv's Astar for fixed genetic group effects implicitly within the random effects

id !A !L nadivAstar.txt

p

is !I 0 1

gen 15

f

foc0

g1

nadivAstar.giv

ggTutorial.dat !SKIP 1

!LAST id 2

p ~ mu f !r giv1(id)

Here, genetic group effects are fitted in the model using nadiv’s generalized inverse by including

61

giv1(id) in the random effects syntax statement. The line below the data file, but before the model

statement, (!LAST id 2) tells ASReml to fit the first two equations associated with the id variable (the

genetic groups) last. This is done to help the model to converge (see Appendix 6.3.1).

The genetic group predictions and standard errors are reported in the “ggNadivAstarFxd.sln” file.

These can be read back into R:

nadivAstarFxdPred <- read.table("./asreml/ggNadivAstarFxd/ggNadivAstarFxd.sln", header = TRUE)

so that we can see the fixed effect estimates and their standard errors along with the genetic group

predictions:

nadivAstarFxdPred[1:4,]

Model_Term Level Effect seEffect

1 f 1 0.666 1.83200

2 mu 1 0.000 0.00000

3 giv1(id) foc0 19.800 0.06579

4 giv1(id) g1 22.910 0.06008

Note the software has set the intercept (mu) estimate to zero in this model (see discussion of estimability

in Appendix S6.2), implying this is the reference to which the foc0 and g1 genetic group effects are the

estimated deviations. Therefore, the predicted total additive genetic effects (u) include the overall phenotypic

mean. However, the difference between the genetic group effects 3.11 agrees with the expected difference

between the mean breeding values of the immigrant group (3) and the founder population (0) that was

specified in the simulation.

The predicted total additive genetic effects (u) are also reported in the “ggNadivAstarFxd.sln” file (see

now R object nadivAstarFxdPred) and follow below the genetic group predictions. Because the order of

rows in Q matches the order of individual identities in ggTutorial, the predicted breeding values (a) can be

calculated without any further manipulation as (eqn 6 in main text):

AstarFxd_gHat <- matrix(nadivAstarFxdPred[3:4, "Effect"], ncol = 1)

AstarFxd_a <- nadivAstarFxdPred[-c(1:4), "Effect"] - Q %*% AstarFxd_gHat

Note, if more individuals are in the pedigree than the dataset and/or the identities in the pedigree

and data are ordered differently, more coding is necessary to ensure that the predicted genetic effect for

62

a particular individual is added to the correct weighted genetic group contribution. Additionally, if more

random effects are included in the model, care has to be taken in order to ensure the correct random effect

predictions are extracted for the total additive genetic effects (u) and used to calculate breeding values (a).

The R function match() is particularly helpful in these cases.

6.4.4.4 Fixed implicit genetic group effects with A* (from ASReml) ASReml can fit genetic

group effects implicitly within the random effects using its own function to construct A∗. First, we construct

the data and pedigree files in R.

Calculate Q and include it in the dataset for consistency with other versions of this data.

Q <- ggcontrib(ggPed[, 1:3])

Warning in numPed(pedigree): Zero in the dam column interpreted as a

missing parent

Warning in numPed(pedigree): Zero in the sire column interpreted as a

missing parent

Note that the two warnings above (regarding zeroes being interpreted as missing dams/sires) are to be

expected and should not be cause for any concern in this particular pedigree/example.

Add the columns of Q (foc0 and g1) as variables in ggTutorial.

ggTutorial <- cbind(ggTutorial, Q)

str(ggTutorial)

'data.frame': 6000 obs. of 13 variables:

$ id : Factor w/ 6000 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...

$ dam : int NA NA NA NA NA NA NA NA NA NA ...

$ sire : int NA NA NA NA NA NA NA NA NA NA ...

$ parAvgU: num NA NA NA NA NA NA NA NA NA NA ...

$ mendel : num NA NA NA NA NA NA NA NA NA NA ...

$ u : num -0.393 -0.675 -0.442 -1.03 -1.913 ...

$ r : num -0.0836 0.142 1.892 -1.2982 0.4668 ...

63

$ p : num 19.5 19.5 21.5 17.7 18.6 ...

$ is : int 0 0 0 0 0 0 0 0 0 0 ...

$ gen : int 1 1 1 1 1 1 1 1 1 1 ...

$ f : num 0 0 0 0 0 0 0 0 0 0 ...

$ foc0 : num 1 1 1 1 1 1 1 1 1 1 ...

$ g1 : num 0 0 0 0 0 0 0 0 0 0 ...

An important point to make is that, because the pedigree and data for ggTutorial have essentially

the same sizes and structures (only ggPed now has two extra rows for the genetic groups - but these will be

dropped automatically from Q by ggcontrib()), the genetic group coefficients from Q can be added directly

to the data with ggTutorial <- cbind(ggTutorial, Q) above. However, whenever a pedigree contains

more individuals than the data (or in a different order), an intermediate step is required. Specifically, since

the Q matrix contains a row for every individual in the pedigree, only the subset of rows in Q that correspond

to phenotyped individuals in a dataset should be extracted and ordered according to the identities in the

data.

Write the pedigree containing genetic groups and the relevant portion of the data to files in formats

that ASReml can use. Note, ASReml expects pedigree columns ordered ID, Sire, Dam.

Write the pedigree

write.table(ggPed[, c(1,3,2)], "./asreml/ggAsremlAstarFxd/asremlGG.ped",

row.names = FALSE, quote = FALSE)

Write the data

asData <- ggTutorial[, -c(2:7)]

write.table(asData, "./asreml/ggAsremlAstarFxd/ggTutorial.dat",

row.names = FALSE, quote = FALSE)

The model is specified in ASReml (see also the “./asreml/ggAsremlAstarFxd” folder in the supporting

files):

ASReml's Astar for fixed genetic groups implicitly within the random effects

id !P

p

is !I 0 1

64

gen 15

f

foc0

g1

asremlGG.ped !ALPHA !SKIP 1 !MAKE !GIV !DIAG !GROUPS 2

ggTutorial.dat !SKIP 1

!LAST id 2

p ~ mu f !r id

Here, genetic groups are specified as the top two lines of the pedigree file asremlGG.ped using !GROUPS

2 as an additional qualifier to the pedigree file line. ASReml then creates A∗ from the pedigree and saves

this as a list in the file “ggAsremlAstarFxd_A.giv” (when the !GIV qualifier is included in the pedigree line).

The line below the data file, but before the model statement, (!LAST id 2) tells ASReml to fit the first

two equations associated with the id variable (the genetic groups) last. This is done to help the model to

converge (see Appendix 6.3.1).

The genetic group predictions and standard errors are reported in the “ggAsremlAstarFxd.sln” file.

These can be read back into R:

asremlAstarFxdPred <- read.table("./asreml/ggAsremlAstarFxd/ggAsremlAstarFxd.sln", header = TRUE)

so that we can see the fixed effect estimates and their standard errors along with the genetic group

predictions:

asremlAstarFxdPred[1:4,]

Model_Term Level Effect seEffect

1 f 1 0.666 1.83200

2 mu 1 0.000 0.00000

3 id foc0 19.800 0.06579

4 id g1 22.910 0.06008

Note the software has set the intercept (mu) estimate to zero in this model (see discussion of estimability

in Appendix S6.2), implying this is the reference to which the foc0 and g1 genetic group effects are the

estimated deviations. Therefore, the predicted total additive genetic effects (u) include the overall phenotypic

65

mean. However, the difference between the genetic group effects 3.11 agrees with the expected difference

between the mean breeding values of the immigrant group (3) and the founder population (0) that was

specified in the simulation.

The predicted total additive genetic effects (u) are also reported in the “ggAsremlAstarFxd.sln” file

(see now R object asremlAstarFxdPred) and follow below the genetic group predictions. Because the order

of rows in Q matches the order of individual identities in ggTutorial, the predicted breeding values (a) can

be calculated without any further manipulation as (eqn 6 in main text):

AstarFxd_gHat <- matrix(asremlAstarFxdPred[3:4, "Effect"], ncol = 1)

AstarFxd_a <- asremlAstarFxdPred[-c(1:4), "Effect"] - Q %*% AstarFxd_gHat

Note, if more individuals are in the pedigree than the dataset and/or the identities in the pedigree

and data are ordered differently, more coding is necessary to ensure that the predicted genetic effect for

a particular individual is added to the correct weighted genetic group contribution. Additionally, if more

random effects are included in the model, care has to be taken in order to ensure the correct random effect

predictions are extracted for the total additive genetic effects (u) and used to calculate breeding values (a).

The R function match() is particularly helpful in these cases.

6.4.4.5 Random implicit genetic group effects with A* (from ASReml) Fitting random effects of

genetic groups implicity within the random effects of an animal model requires a modified augmented inverse

relatendess matrix (A∗) to be created. This can be accomplished in R with nadiv such that the object is then

passed to ASReml or the built-in functions of ASReml can do this while fitting the model. Creating the

modified matrix in R using nadiv has been demonstrated in Appendix 6.4.3.4 and including such a matrix

in an ASReml analysis is demonstrated in Appendix 6.4.4.3. Here, we demonstrate how to use ASReml

to create a modified A∗ for the ggPed pedigree that has the necessary alterations (see discussion of this in

Appendix S5 and cautions/considerations in Appendix 6.3.2) so the model interprets the genetic groups as

random effects and fit the model all in a single execution of ASReml.

First, we construct the data and pedigree files in R. Calculate Q and include it in the dataset for

consistency with other versions of this data.

Q <- ggcontrib(ggPed[, 1:3])

Warning in numPed(pedigree): Zero in the dam column interpreted as a

missing parent

66

Warning in numPed(pedigree): Zero in the sire column interpreted as a

missing parent

Note that the two warnings above (regarding zeroes being interpreted as missing dams/sires) are to be

expected and should not be cause for any concern in this particular pedigree/example.

Add the columns of Q (foc0 and g1) as variables in ggTutorial.

ggTutorial <- cbind(ggTutorial, Q)

str(ggTutorial)

'data.frame': 6000 obs. of 13 variables:

$ id : Factor w/ 6000 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...

$ dam : int NA NA NA NA NA NA NA NA NA NA ...

$ sire : int NA NA NA NA NA NA NA NA NA NA ...

$ parAvgU: num NA NA NA NA NA NA NA NA NA NA ...

$ mendel : num NA NA NA NA NA NA NA NA NA NA ...

$ u : num -0.393 -0.675 -0.442 -1.03 -1.913 ...

$ r : num -0.0836 0.142 1.892 -1.2982 0.4668 ...

$ p : num 19.5 19.5 21.5 17.7 18.6 ...

$ is : int 0 0 0 0 0 0 0 0 0 0 ...

$ gen : int 1 1 1 1 1 1 1 1 1 1 ...

$ f : num 0 0 0 0 0 0 0 0 0 0 ...

$ foc0 : num 1 1 1 1 1 1 1 1 1 1 ...

$ g1 : num 0 0 0 0 0 0 0 0 0 0 ...

An important point to make is that, because the pedigree and data for ggTutorial have essentially

the same sizes and structures (only ggPed now has two extra rows for the genetic groups - but these will be

dropped automatically from Q by ggcontrib()), the genetic group coefficients from Q can be added directly

to the data with ggTutorial <- cbind(ggTutorial, Q) above. However, whenever a pedigree contains

more individuals than the data (or in a different order), an intermediate step is required. Specifically, since

the Q matrix contains a row for every individual in the pedigree, only the subset of rows in Q that correspond

to phenotyped individuals in a dataset should be extracted and ordered according to the identities in the

data.

67

Write the pedigree containing genetic groups and the relevant portion of the data to files in formats

that ASReml can use. Note, ASReml expects pedigree columns ordered ID, Sire, Dam.

Write the pedigree

write.table(ggPed[, c(1,3,2)], "./asreml/ggAsremlRan/asremlGG.ped",

row.names = FALSE, quote = FALSE)

Write the data

asData <- ggTutorial[, -c(2:7)]

write.table(asData, "./asreml/ggAsremlRan/ggTutorial.dat",

row.names = FALSE, quote = FALSE)

The model is specified in ASReml (see also the “./asreml/ggAsremlRan” folder in the supporting files):

ASReml's Astar for random genetic groups implicitly within the random effects

id !P

p

is !I 0 1

gen 15

f

foc0

g1

asremlGG.ped !ALPHA !SKIP 1 !MAKE !GIV !DIAG !GROUPS 2 !GOFFSET 0.1

ggTutorial.dat !SKIP 1

!LAST id 2

p ~ mu f !r id

Here, genetic groups are specified as the top two lines of the pedigree file asremlGG.ped using !GROUPS

2 as an additional qualifier to the pedigree file line. Further, the !GOFFSET 0.1 qualifier to the pedigree line

instructs ASReml to add 0.1 to the diagonal elements of the group-group equations in A∗ (see discussion of

this in Appendix S5, cautions/considerations in Appendix 6.3.2, and other examples in Appendix 6.4.2.3 and

Appendix 6.4.3.4). As a result of this alteration, the genetic group effects are conceptually random effects in

the model. The addition of 0.1 to the diagonal element of the A∗ constrains the variance in genetic group

effects to be one tenth the additive genetic variance estimated by the model. A value of 0.1 may bias estimates

68

of additive genetic variance in models of other datasets. Therefore, we advise testing values other than 0.1

(e.g., 1 or 10) and comparing estimates from these alternative models. Note that a value of 1 constrains the

variance in genetic group effects to be equal to the additive genetic variance estimated by the model.

ASReml then creates A∗ from the pedigree and saves this as a list in the file “ggAsremlRan_A.giv”

(when the !GIV qualifier is included in the pedigree line). The line below the data file, but before the model

statement, (!LAST id 2) tells ASReml to fit the first two equations associated with the id variable (the

genetic groups) last. This is done to help the model to converge (see Appendix 6.3.1).

The genetic group predictions and standard errors are reported in the “ggAsremlRan.sln” file. These

can be read back into R:

asremlRanPred <- read.table("./asreml/ggAsremlRan/ggAsremlRan.sln", header = TRUE)

so that we can see the fixed effect estimates and their standard errors along with the genetic group

predictions:

asremlRanPred[1:4,]

Model_Term Level Effect seEffect

1 f 1 0.6656 1.832

2 mu 1 21.3600 2.321

3 id foc0 -1.5580 2.321

4 id g1 1.5580 2.321

Note the intercept in this model (mu) is estimable and so the model returns this estimate along with

predicting both of the genetic group effects. The genetic group predictions, themselves, are random effects

and thus are deviations from their expected value of 0. The difference between the genetic groups 3.116

agrees with the expected difference between the mean breeding values of the immigrant group (3) and the

founder population (0) that was specified in the simulation.

The predicted total additive genetic effects (u) are also reported in the “ggAsremlRan.sln” file (see now

R object asremlRanPred) and follow below the genetic group predictions. Here, the prediced total additive

genetic effects include the genetic group effects expressed as deviations from 0. Because the order of rows

in Q matches the order of individual identities in ggTutorial, the predicted breeding values (a) can be

calculated without any further manipulation as (eqn 6 in main text):

69

AstarRan_gHat <- matrix(asremlRanPred[3:4, "Effect"], ncol = 1)

AstarRan_a <- asremlRanPred[-c(1:4), "Effect"] - Q %*% AstarRan_gHat

Note, if more individuals are in the pedigree than the dataset and/or the identities in the pedigree

and data are ordered differently, more coding is necessary to ensure that the predicted genetic effect for

a particular individual is added to the correct weighted genetic group contribution. Additionally, if more

random effects are included in the model, care has to be taken in order to ensure the correct random effect

predictions are extracted for the total additive genetic effects (u) and used to calculate breeding values (a).

The R function match() is particularly helpful in these cases.

6.4.5 WOMBAT

Here are three approaches to fit genetic groups in a WOMBAT analysis. All three require some preparation

using the nadiv functions in R. However, only the explicit regression on the genetic group covariate includes

genetic groups as fixed effects. The second and third examples below include genetic groups as random effects

in the model. It should be noted that WOMBAT sets up the mixed model slightly differently than the

previous software programs. Notably, WOMBAT fits response variables and covariates as deviations from

the mean response and mean of each covariate, respectively. Thus, regression coefficients are equivalent, but

have slightly different estimates/interpretations from the estimates in the above tutorials. The preparation of

the ggTutorial data and requisite outputs from nadiv in R will first be demonstrated before detailing the

code used in the WOMBAT model fitting. However, the basic files necessary to fit the WOMBAT models

without any preparation in R are available in the accompanying supporting files on Dryad (Wolak & Reid

2016). The content of these files is:

• ggTutorial.d contains the re-coded ggTutorial data. A value of 10000 has been added to the id

to allow unique integer codes for the genetic groups (WOMBAT requires integer identities). This

file contains space separated columns from a subset of the columns in the original data.frame in the

following order: id, p, is, gen, f, foc0, and g1. This is needed for all three types of models fitted.

• wombatPed.d contains the pedigree and is analogous to the first three columns of ggTutorial

• ggReg.par, ggNadivAstarRan.par, and ggWombatRan.par are included within each folder and each

specifies a separate model to run.

70

• id.gin contains an inverse covariance matrix, in list format. This is either the nadiv created A∗ or

A−1, depending on the analysis.

• id.codes contains the mapping of running integers to the particular name of individuals in

ggTutorial.d. For WOMBAT’s implementation of a genetic group analysis, this file must contain an

extra column (dummy column in these analyses) that contains an integer code specifying if a genotype

is available, as well as extra columns with the Q matrix (which must be constructed within nadiv as

there is no function to do this in WOMBAT).

To prepare the data for an animal model, all that is necessary is to calculate the coefficients of inbreeding

(f ; to minimize bias from inbreeding depression, see the last paragraph of Appendix 6.4.1). This calculation

can be done using the makeAinv() function in the nadiv package.

library(nadiv)

ggTutorial$f <- makeAinv(ggTutorial[, 1:3])$f

6.4.5.1 Preparing a pedigree with genetic groups Calculating the matrix of genetic group contribu-

tions (Q) and the augmented inverse relatedness matrix (A∗) requires a pedigree that has genetic groups

indicated instead of missing values for parents. In the ggTutorial data, we will assign all individuals with

unknown parents in the first generation phantom parents from one genetic group (foc0). All individuals in

subsequent generations that have unknown parents will be assigned phantom parents from a second genetic

group (g1). Alternatively, this second group could be further divided into genetic groups based on generation.

However, the data were simulated such that every immigrant has the same expected mean breeding value,

regardless of the generation in which it was born. Therefore, we will stick to a total of two genetic groups

(but, feel free to model more than 2 groups!).

Create an object that will be the pedigree with genetic groups (ggPed).

ggPed <- ggTutorial[, c("id", "dam", "sire", "is", "gen")]

naPar <- which(is.na(ggPed[, 2]))

ggPed$GG <- rep("NA", nrow(ggPed))

'focal' genetic group = "foc0" and 'immigrant' = "g1"

obtained by pasting "foc" & "g" with immigrant status "0" or "1", respectively

ggPed$GG[naPar] <- as.character(ggPed$is[naPar])

71

ggPed$GG[ggPed$GG == "0"] <- paste0("foc", ggPed$GG[ggPed$GG == "0"])

ggPed$GG[ggPed$GG == "1"] <- paste0("g", ggPed$GG[ggPed$GG == "1"])

ggPed[naPar, 2:3] <- ggPed[naPar, "GG"]

Note, the approach and format of the pedigree below is different from the Q1988sub pedigree (Appendix

6.1) - mostly because the format below makes it easier to specify genetic groups in a pedigree for this

particular case, but partly to illustrate the flexibility of nadiv functions. To be more specific, the Q1988sub

pedigree contained two extra rows for the two genetic groups. The ggroups argument to makeAinv() supplied

an integer indicating how many rows at the begining of the pedigree contained genetic groups and not

individuals. However, below no extra rows are added to the pedigree and the character vector given to the

ggroups argument in both ggcontrib() and makeAinv() specifies the unique genetic groups.

6.4.5.2 Fixed explicit genetic group effects with Q (from nadiv) Fitting genetic group effects

explicitly requires the columns of Q to be included as separate fixed covariate regressions. The code below

creates Q for the ggPed pedigree and adds the columns (foc0 and g1) as variables in ggTutorial so that

they can be included in a model.

Q <- ggcontrib(ggPed[, 1:3], ggroups = c("foc0", "g1"))

ggTutorial <- cbind(ggTutorial, Q)

str(ggTutorial)

'data.frame': 6000 obs. of 13 variables:

$ id : Factor w/ 6000 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...

$ dam : int NA NA NA NA NA NA NA NA NA NA ...

$ sire : int NA NA NA NA NA NA NA NA NA NA ...

$ parAvgU: num NA NA NA NA NA NA NA NA NA NA ...

$ mendel : num NA NA NA NA NA NA NA NA NA NA ...

$ u : num -0.393 -0.675 -0.442 -1.03 -1.913 ...

$ r : num -0.0836 0.142 1.892 -1.2982 0.4668 ...

$ p : num 19.5 19.5 21.5 17.7 18.6 ...

$ is : int 0 0 0 0 0 0 0 0 0 0 ...

$ gen : int 1 1 1 1 1 1 1 1 1 1 ...

72

$ f : num 0 0 0 0 0 0 0 0 0 0 ...

$ foc0 : num 1 1 1 1 1 1 1 1 1 1 ...

$ g1 : num 0 0 0 0 0 0 0 0 0 0 ...

An important point to make is that, because the pedigree and data for ggTutorial have essentially

the same sizes and structures, the genetic group coefficients from Q can be added directly to the data with

ggTutorial <- cbind(ggTutorial, Q) above. However, whenever a pedigree contains more individuals

than the data (or in a different order), an intermediate step is required. Specifically, since the Q matrix

contains a row for every individual in the pedigree, only the subset of rows in Q that correspond to phenotyped

individuals in a dataset should be extracted and ordered according to the identities in the data.

Now we need to write the pedigree and portion of the data to files in formats that WOMBAT can use.

Also, for consistency with analyses below, we will add a constant value of 10000 to the integer ids.

IDaddDF <- ggTutorial[, -c(4:7)]

IDaddDF[, 1] <- as.integer(as.character(IDaddDF[, 1])) + 10000

IDaddDF[, 2] <- as.integer(as.character(IDaddDF[, 2])) + 10000

IDaddDF[, 3] <- as.integer(as.character(IDaddDF[, 3])) + 10000

IDaddPed <- IDaddDF[, 1:3]

IDaddPed[is.na(IDaddPed[, 2]), 2] <- 0

IDaddPed[is.na(IDaddPed[, 3]), 3] <- 0

write.table(IDaddDF[, -c(2:3)], "./wombat/ggTutorial.d", col.names = FALSE,

row.names = FALSE)

write.table(IDaddPed, "./wombat/wombatPed.d", col.names = FALSE,

row.names = FALSE)

The fixed regressions on foc0 and g1 can be combined with the standard A−1 to specify an animal

model in WOMBAT (see also the “./wombat/ggReg” folder in the supporting files). Because unique solutions

to the model do not exist (see discussion of estimability in Appendix S6.2) for the coefficient of inbreeding (f)

and genetic group effects (foc0 and g1), we fit the foc0 genetic group as the last fixed effect. This ensures

that the model sets foc0 as a reference group and estimates the g0 genetic group effect as a deviation from

the mean breeding value in the foc0 group.

73

COM Explicit genetic groups fitted as Fixed regressions

PED ../wombatPed.d

DAT ../ggTutorial.d

id 6000

p

is 2

gen 15

f

foc0

g1

end

ANAL UNI

MODEL

COV f(1)

COV g1(1)

COV foc0(1)

RAN id NRM

TR p

END

VAR id 1

0.5

VAR error 1

0.5

SPECIAL

COVZER f(1) FIT

COVZER foc0(1) FIT

COVZER g1(1) FIT

END

Note the last SPECIAL section, which is necessary because both the coefficient of inbreeding (f) and the

genetic group contributions (foc0 and g1) have values of zero that are meaningful (i.e., these zeroes do not

indicate missing values).

74

Estimates of the genetic group effects are reported in the “./wombat/ggReg/FixSolutions.out” file. Note

the software has set the foc0 group estimate to zero in this model, implying this is the reference group

and the g1 genetic group effect is the estimated deviation. The estimate of 3.098 agrees with the expected

difference between mean breeding value in the immigrant group (3) and the founder population (0) that was

specified in the simulation.

The predicted breeding values (a) are also reported in the “RnSoln_id.dat” file.

6.4.5.3 Random implicit genetic group effects with A* (from nadiv) Fitting genetic group effects

implicitly within the random effects requires the list format of a modified A∗ to be supplied to WOMBAT.

Currently, there is no option to incorporate the number of genetic groups fitted implicitly when the software

calculates the residual degrees of freedom. Residual degrees of freedom that incorporate the number of genetic

groups are needed to calculate the residual variance and the log-likelihood for a model in which genetic

groups are considered fixed effects (e.g., see how the residual degrees of freedom are adjusted in an asreml

analysis in Appendix 6.4.3.4). However, the number of genetic groups are not considered in these same

calculations when genetic groups are considered random effects. Therefore, we demonstrate fitting genetic

groups implicitly when groups are treated as random effects.

Fitting random effects of genetic groups implicity within the random effects of an animal model requires

the augmented inverse relatendess matrix (A∗) to be supplied as a list. First, we create the sparse matrix of

A∗ for the ggPed pedigree using the makeAinv function in the nadiv package in R, then make the necessary

alterations (see discussion of this in Appendix S5 and cautions/considerations in Appendix 6.3.2) so the

model interprets the genetic groups as random effects, convert the sparse matrix to a list, and fit the model.

The code below creates A∗ for the ggPed pedigree, the data file, and id.codes so that the genetic

group and identities in A∗ can be associated with identities in the data file. We will also calculate Q and

include it in the dataset for consistency with other versions of this data.

Q <- ggcontrib(ggPed[, 1:3], ggroups = c("foc0", "g1"))

ggTutorial <- cbind(ggTutorial, Q)

An important point to make is that, because the pedigree and data for ggTutorial have essentially

the same sizes and structures (only ggPed now has two extra rows for the genetic groups - but these will be

dropped automatically from Q by ggcontrib()), the genetic group coefficients from Q can be added directly

to the data with ggTutorial <- cbind(ggTutorial, Q) above. However, whenever a pedigree contains

75

more individuals than the data (or in a different order), an intermediate step is required. Specifically, since

the Q matrix contains a row for every individual in the pedigree, only the subset of rows in Q that correspond

to phenotyped individuals in a dataset should be extracted and ordered according to the identities in the

data.

Next create A∗:

Astar <- makeAinv(ggPed[, 1:3], ggroups = c("foc0", "g1"), gOnTop = TRUE)$Ainv

Next we add a small value to the diagonal elements of the group-group portion of the matrix. As a

result of this alteration, the genetic group effects are conceptually random effects in the model. Below, we

add 0.1 to the diagonal element of the A∗ which will constrain the variance in genetic group effects to be one

tenth the additive genetic variance estimated by the model. A value of 0.1 may bias estimates of additive

genetic variance in models of other datasets. Therefore, we advise testing values other than 0.1 (e.g., 1 or 10)

and comparing estimates from these alternative models. Note that a value of 1 constrains the variance in

genetic group effects to be equal to the additive genetic variance estimated by the model.

The easiest approach is to adjust the genetic group diagonals of A∗, and this is why we stored the

matrix returned by makeAinv() above (i.e., object Ainv in the list). Once the additions are made, we can

then convert the matrix to the list format required by asreml.

AstarAdd <- Astar

(ggrows <- match(c("foc0", "g1"), dimnames(AstarAdd)[[1]]))

[1] 1 2

diag(AstarAdd)[ggrows] <- diag(AstarAdd)[ggrows] + 0.1

Astar[ggrows, ggrows]

2 x 2 sparse Matrix of class "dgCMatrix"

##

foc0 400 .

g1 . 520

76

AstarAdd[ggrows, ggrows]

2 x 2 sparse Matrix of class "dgCMatrix"

##

foc0 400.1 .

g1 . 520.1

convert to the list format using `nadiv::sm2list()`

listAstarAdd <- sm2list(AstarAdd, rownames = rownames(AstarAdd))

Now we need to write the data, modified A∗ list, and identity codes to files in formats that WOMBAT

can use. Also, for consistency with analyses below, we will add a constant value of 10000 to the integer ids.

IDaddDF <- ggTutorial[, -c(2:7)]

IDaddDF[, 1] <- as.integer(as.character(IDaddDF[, 1])) + 10000

write.table(IDaddDF[, -c(2:3)], "./wombat/ggTutorial.d", col.names = FALSE,

row.names = FALSE)

Write the general inverse of A* to file, note the re-ordering of first two columns

First, calculate the log determinant (see note below)

AstarAddLogdet <- -1 * determinant(AstarAdd, logarithm = TRUE)$modulus[1]

write.table(listAstarAdd[, c(2,1,3)], "./wombat/ggNadivAstarRan/id.gin",

col.names = FALSE, row.names = FALSE)

fConn <- file("./wombat/ggNadivAstarRan/id.gin", "r+")

Lines <- readLines(fConn)

Add the log-determinant as the first line of the file

writeLines(c(AstarAddLogdet, Lines), con = fConn)

close(fConn)

Create mapping between order of identities and their unique codes

including 2 genetic groups

id.codes <- cbind(seq(1, max(listAstarAdd[, 1:2]), 1), c(1, 2, 10000 + seq(nrow(ggTutorial))))

write.table(id.codes, "./wombat/ggNadivAstarRan/id.codes", col.names = FALSE,

row.names = FALSE)

77

Note above that we added a step to calculate the log-determinant of the modified A∗. WOMBAT

requires this as the first line of a .gin (generalized inverse) file (note this is the log-determinant of the

non-inverse matrix, which can be calculated from the inverse).

The animal model in WOMBAT using the supplied general inverse matrix A∗ (see also the “./wom-

bat/ggNadivAstarRan” folder in the supporting files):

COM Random genetic groups fitted implicitly using Astar from nadiv

DAT ../ggTutorial.d

id 6002

p

is 2

gen 15

f

foc0

g1

end

ANAL UNI

MODEL

COV f(1)

RAN id GIN

TR p

END

VAR id 1

0.5

VAR error 1

0.5

SPECIAL

COVZER f(1) FIT

END

Note the last SPECIAL section, which is necessary because the coefficient of inbreeding (f) has values of

zero that are meaningful (i.e., these zeroes do not indicate missing values).

The genetic group effect predictions are reported as the first two values in the “./wom-

78

bat/ggNadivAstarRan/RnSoln_id.dat” file. The genetic group predictions are random effects and

thus are deviations from their expected value of zero. The difference between the genetic groups 3.117 agrees

with the expected difference between the mean breeding values of the immigrant group (3) and the founder

population (0) that was specified in the simulation.

The predicted total additive genetic effects (u) are also reported in the “./wombat/ggNadivAstarRan/RnSoln_id.dat”

file. Here, the prediced total additive genetic effects include the genetic group effects expressed as deviations

from 0.

6.4.5.4 WOMBAT’s genetic groups (Random group effects with Q from nadiv) Fitting genetic

group effects using WOMBAT’s own functionality still requires calculating and supplying Q. Although Q is

supplied, genetic groups are included implicitly within the random effects. Further, the genetic group effects

themselves are treated as random effects with a variance among group effects that is estimated by the model.

WOMBAT does not provide a function to calculate Q, so we calculate it using nadiv’s ggcontrib()

function and provide A−1 as a generalized inverse. WOMBAT can be used to create A−1, but here we

will use the makeAinv() function in nadiv. For more details, see example 18 supplied with WOMBAT,

particularly the pdf file entitled “RNote_WOMBATS2Step.pdf” that is included within the Example 18

folder and the “wombat.par” file in the folder “~/Example18/C”.

The code below creates A−1 for the ggPed pedigree and creates the data file and id.codes that contains

Q (we also include the columns of Q in the data file for consistency with other versions of this data set).

Q <- ggcontrib(ggPed[, 1:3], ggroups = c("foc0", "g1"))

ggTutorial <- cbind(ggTutorial, Q)

AinvOut <- makeAinv(ggTutorial[, 1:3], det = TRUE)

listAstar <- sm2list(AinvOut$Ainv)

AinvLogdet <- AinvOut$logDet

Note above we told makeAinv() to calculate the log-determinant. WOMBAT requires this as the

first line of a .gin (generalized inverse) file (note this is the log-determinant of the non-inverse matrix A,

which nadiv calculates when forming the inverse - here A−1). Now we need to write the data, A−1 list, and

identity codes to files in formats that WOMBAT can use. Also, for consistency with other analyses, we will

add a constant value of 10000 to the integer ids.

79

IDaddDF <- ggTutorial[, -c(2:7)]

IDaddDF[, 1] <- as.integer(as.character(IDaddDF[, 1])) + 10000

write.table(IDaddDF[, -c(2:3)], "./wombat/ggTutorial.d", col.names = FALSE,

row.names = FALSE)

Write the general inverse of A^-1 to file, note the re-ordering of first two columns

write.table(listAinv[, c(2,1,3)], "./wombat/ggWombatRan/id.gin",

col.names = FALSE, row.names = FALSE)

fConn <- file("./wombat/ggWombatRan/id.gin", "r+")

Lines <- readLines(fConn)

Add the log-determinant as the first line of the file

writeLines(c(AinvLogdet, Lines), con = fConn)

close(fConn)

Create mapping between order of identities and their unique codes

including 2 genetic groups

also add "dummy" column to indicate no genotypes available (1)

Add Q matrix as final columns

id.codes <- cbind(seq(1, 6000), 10000 + seq(nrow(ggTutorial)), rep(1, 6000), round(10000*Q, 0))

write.table(id.codes, "./wombat/ggWombatRan/id.codes", col.names = FALSE,

row.names = FALSE)

Note that WOMBAT wants the genetic group contributions in the id.codes file as an integer. There-

fore, we have multiplied Q by a large number (10000 used above) and then rounded these to the nearest whole

number. This scaling factor of 10000 will need to be indicated in the parameter file (“ggWombatRan.par”).

The animal model in WOMBAT is then (see also the “./wombat/ggWombatRan” folder in the supporting

files):

COM WOMBATs genetic groups (random genetic group effects with Q from `nadiv`)

DAT ../ggTutorial.d

id 6000

p

is 2

80

gen 15

f

foc0

g1

end

ANAL UNI

MODEL

COV f(1)

SUBJ id

RAN id GIN

RAN ggrps IDE

TR p

END

VAR id 1

0.5

VAR ggrps 1

1.0

VAR error 1

0.5

SPECIAL

COVZER f(1) FIT

END

SPECIAL

GENGROUPS ggrps 2 10000

END

Here, genetic groups are specified as their own random effect in the model as ggrps with a diagonal

covariance matrix specified (IDE). Thus, genetic group effects are conceptually treated as random effects

(Appendix S1) in the model. Note the SPECIAL sections, which are necessary because the coefficient of

inbreeding (f) has values of zero that are meaningful (i.e., these zeroes do not indicate missing values) and for

fitting genetic groups. The genetic group SPECIAL section indicates the scaling factor by which we multiplied

elements in Q that were supplied in the file “./wombat/ggWombatRan/id.codes”.

The variance estimates in “./wombat/ggWombatRan/SumEstimates.out” match the simulated values

81

for the id and residual terms. The estimated variance for the genetic group term (ggrps) is approximately 2.

All other simulated values are recovered in this analysis (model estimates match simulated values).

The genetic group effect predictions are reported in the “./wombat/ggWombatRan/RnSoln_ggrps.dat”

file. The genetic group predictions are random effects and thus are deviations from their expected value

of zero. The difference between the genetic groups 3.111 agrees with the expected difference between the

mean breeding values of the immigrant group (3) and the founder population (0) that was specified in the

simulation.

The predicted total additive genetic effects (u) are reported in the “./wombat/ggWombatRan/RnSoln_id.dat”

file. Here, the prediced total additive genetic effects include the genetic group effects expressed as deviations

from 0.

References: Appendix S6

Butler, D.G., Cullis, B.R., Gilmour, A.R. & Gogel, B.J. (2009) asreml: asreml() fits the linear mixed model.

R package version 3.0. www.vsni.co.uk.

Davis, T.A. (2006) Direct Methods for Sparse Linear Systems. SIAM, Philadelphia.

Gilmour, A.R. (2005) Developments in utilizing pedigrees in genetic analysis within ASReml. Proceedings of

the Association for the Advancement of Animal Breeding and Genetics, pp. 290–293.

Gilmour, A.R. (2010) Handling non positive definite relationship matrices in mixed models. 9th World

Congress on Genetics Applied to Livestock Production, pp. 1–4. Leipzig, Germany.

Gilmour, A.R., Gogel, B.J., Cullis, B.R., Welham, S.J. & Thompson, R. (2014) ASReml 4.1 user guide.

Hadfield, J.D. (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm

R package. Journal of Statistical Software, 33, 1–22.

Hadfield, J.D., Wilson, A.J., Garant, D., Sheldon, B.C. & Kruuk, L.E.B. (2010) The misuse of BLUP in

ecology and evolution. American Naturalist, 175, 116–125.

Henderson, C.R. (1976) A simple method for computing the inverse of a numerator relationship matrix used

in prediction of breeding values. Biometrics, 32, 69–83.

Kennedy, B.W., Schaeffer, L.R. & Sorensen, D.A. (1988) Genetic properties of animal models. Journal of

Dairy Science, 71, 17–26.

82

Lynch, M. & Walsh, B. (1998) Genetics and Analysis of Quantitative Traits. Sinauer Associates, Incorporated,

Sunderland, MA.

Meuwissen, T.H.E. & Luo, Z. (1992) Computing inbreeding coefficients in large populations. Genetics,

Selection, Evolution, 24, 305–313.

Meyer, K. (2007) WOMBAT - a tool for mixed model analyses in quantitative genetics by restricted maximum

likelihood (REML). Journal of Zhejiang University. Science. B, 8, 815–821.

Mrode, R.A. (2005) Linear Models for the Prediction of Animal Breeding Values, 2nd ed. CABI Publishing,

Cambridge, MA.

Oikawa, T. & Yasuda, K. (2009) Inclusion of genetically identical animals to a numerator relationship matrix

and modification of its inverse. Genetics, Selection, Evolution, 41, 25.

Quaas, R.L. (1976) Computing the diagonal elements and inverse of a large numerator relationship matrix.

Biometrics, 32, 949–953.

Quaas, R.L. (1988) Additive genetic model with groups and relationships. Journal of Dairy Science, 71,

1338–1345.

Quaas, R.L. (1995) Fx algorithms. An unpublished note.

Reid, J.M. & Keller, L.F. (2010) Correlated inbreeding among relatives: occurrence, magnitude, and

implications. Evolution, 64, 973–985.

Robinson, G.K. (1986) Group effects and computing strategies for models for estimating breeding values.

Journal of Dairy Science, 69, 3106–3111.

Schaeffer, L.R. (1991) C. R. Henderson: Contributions to predicting genetic merit. Journal of Dairy Science,

74, 4052–4066.

Schaeffer, L.R. (1994) Multiple-country comparison of dairy sires. Journal of Dairy Science, 77, 2671–2678.

Schaeffer, L.R. (1999) Phantom parents. An unpublished note.

Sullivan, P.G. (1999) Estimating Genetic Variances and Covariances for Models with Genetic Groups.

http://cgil.uoguelph.ca/dcbgc/Agenda9909/agenda9909.htm.

Westell, R.A., Quaas, R.L. & Van Vleck, L.D. (1988) Genetic groups in an animal model. Journal of Dairy

Science, 71, 1310–1318.

83

http://cgil.uoguelph.ca/dcbgc/Agenda9909/agenda9909.htm

Wolak, M.E. (2012) nadiv: an R package to create relatedness matrices for estimating non-additive genetic

variances in animal models. Methods in Ecology and Evolution, 3, 792–796.

Wolak, M.E. & Keller, L.F. (2014) Dominance genetic variance and inbreeding in natural populations.

Quantitative Genetics in the Wild (eds A. Charmantier, D. Garant & L.E.B. Kruuk), pp. 104–127.

Oxford University Press, Oxford.

Wolak, M.E. & Reid, J.M. (2016) Data from: Accounting for genetic differences among unknown parents

in microevolutionary studies: How to include genetic groups in quantitative genetic animal models.

Journal of Animal Ecology, Dryad Digital Repository, http://dx.doi.org/10.5061/dryad.jf7cr.

84

http://dx.doi.org/10.5061/dryad.jf7cr

Appendix S7: Fuzzy classification of genetic groups

Instead of assigning each phantom parent to a single genetic group, phantom parents can have a probability

of belonging to each group (Fikse 2009). Strategies for assigning phantom parents probabilities of group

membership are briefly discussed by Fikse (2009). In general, fuzzy classification strategies should reflect the

underlying variables causing uncertainty in assigning phantom parents to genetic groups or the uncertainty in

defining the genetic groups themselves. For example, unknown age or birth year of a phantom parent might

preclude easy genetic group assignment in a longitudinal study where genetic groups are structured through

time. Instead, phantom parents with unknown birth years can be assigned a probability of membership in

multiple genetic groups spanning the time in which the phantom parent was likely born. Fuzzy classification

can also be useful in such a context when the group classification itself is uncertain. An example of this would

be when constructing genetic groups that are composed of all phantom parents occurring within five year

intervals. The phantom parents born in the fifth year encompassed by group one may differ more genetically

from phantom parents born in the first year of group one than they do from phantom parents born in the

first year of group two. Additionally, such a structure might be even harder to define when generations are

overlapping. Fuzzy classification then allows for these types of uncertainy to be incorporated into the analysis.

Below is an example of how to implement such fuzzy classification of phantom parents using nadiv in

R to construct the Q and A∗ matrices. We use the example pedigree from Quaas (1988) introduced above

(Appendix 6.1), using the portion of this data that includes phantom parents and observed individuals. The

subset of Q1988 we will use is:

Q1988fuzz <- Q1988[-c(1:2), c("id", "phantomDam", "phantomSire")]

id phantomDam phantomSire

a NA NA

b NA NA

c NA NA

d NA NA

e NA NA

A a b

B A c

C d e

D B C

85

In the id column, lower case letters are phantom parent identities and upper case letters are observed

individual identities. The second and third columns indicate an individual’s dam and sire, respectively. Every

observed individual (upper case letter) with an unknown parent is assigned a unique phantom parent instead

of a missing value (e.g., a instead of NA). The phantom parents are assigned to individuals as in Quaas (1988).

Phantom parents, however, have missing values (NA) assigned as their dams and sires. Additional details

regarding the Q1988 dataset in nadiv are in the R help file that can be viewed by running the command

?Q1988 in an R session. The next step is to assign phantom parents to genetic groups, specifically in such a

way as to allow group membership to be probabilistic.

7.1 Constructing the fuzzy classification matrix F

When fuzzy classification of genetic group membership is used, unknown parents are no longer replaced with

genetic groups in the pedigree. Instead, each unknown parent is assigned a unique phantom parent identity,

these phantom parent identities are given their own entry/row in the pedigree. Also, a fuzzy classification (F)

matrix that has p rows, one for each phantom parent, and r columns, one for each genetic group, needs to be

constructed. The F matrix contains individual elements fij that take values between 0 and 1 and quantify

the probability of phantom parent i belonging to genetic group j. The rows of F (i.e., a phantom parent’s

probabilities of group membership across all genetic groups) must sum to one.

In the example pedigree Q1988fuzz, F is a 5 row by 2 column matrix. Here, we arbitrarily assign fuzzy

classification probabilities (fij). We exclusively assign phantom parent a to genetic group “g1” and b to

genetic group “g2”. We assign phantom parents c, d, e each a 0.5 probability of group membership in each of

the two genetic groups.

Find the phantom parents in the pedigree Q1988fuzz

pp <- which(is.na(Q1988fuzz[, 2]))

First, an empty F matrix

F <- matrix(0, nrow = length(pp), ncol = 2,

dimnames = list(as.character(Q1988fuzz[pp, 1]), c("g1", "g2")))

Assign "a" to "g1" and "b" to "g2"

F[cbind(match(c("a", "b"), Q1988fuzz[pp, 1]), c(1,2))] <- 1

Assign rest of the phantom parents to both "g1" & "g2" with equal probability

F[match(c("c", "d", "e"), Q1988fuzz[pp, 1]),] <- 0.5

F

86

g1 g2

a 1.0 0.0

b 0.0 1.0

c 0.5 0.5

d 0.5 0.5

e 0.5 0.5

Now that the phantom parents have been assigned probabilities of genetic group membership, we

construct the Q and A∗ matrices. To help distinguish the approaches, we will call the resulting matrices

created with fuzzy classification Qf and A∗
f . These will have the same properties as the Q and A∗ matrices

constructed above without fuzzy classification, however, the individual matrix elements will differ. The

difference reflects the uncertainty in phantom parent group membership. If all phantom parents are assigned

with complete probability to one genetic group each (i.e., each row of F, corresponding to each of the phantom

parents, contains a single value of one and the rest zeroes), then the resulting Qf and A∗
f will be exactly

the same as if they were constructed without using fuzzy classification. Further details of the method are in

Fikse (2009), whereas below the focus is on how to implement fuzzy classification using the nadiv functions

ggcontrib() to obtain Qf and makeAinv() to obtain A∗
f .

7.2 Constructing Qf

As described in the main text (and above), the matrix Q contains the fractional contributions from each of

r genetic groups to each individual’s genome, calcluated from the pedigree. With n observed individuals

(i.e., not phantom parents) in the pedigree (e.g., n=4 in Q1988fuzz), the fuzzy classification matrix Qf (the

subscript “f” is used to distinguish this Q matrix as including fuzzy classification of phantom parents) is an n

row by r column matrix. As detailed above (and in the main text), offspring inherit half of every genetic

group contribution from each of their parents. Similarly, offspring of phantom parents inherit half of each

phantom parents genetic group contributions. In the normal construction of Q, phantom parents only belong

to a single genetic group. With fuzzy classification, however, each phantom parent has a probability of group

membership that can be non-zero for more than one group. These probabilities can be thought of as fractional

contributions of each genetic group to each phantom parent’s genome. Consequently, offspring of phantom

parents inherit half of the phantom parents genetic group contributions described in F in exactly the same

manner as offspring inherit all of the genetic group contributions from an observed parent quantified in a row

of Q.

87

The nadiv function ggcontrib() can construct Qf for a given pedigree with r potential genetic group

contributions to each of the n individuals in the pedigree when the fuzzy classification of phantom parents

(F) is supplied to the fuzz argument of the function. For example, Qf for Q1988fuzz is obtained:

(Q_f <- ggcontrib(Q1988fuzz, fuzz = F))

g1 g2

A 0.5 0.5

B 0.5 0.5

C 0.5 0.5

D 0.5 0.5

Each row in Qf (each entry is a proportional contribution) sums to one and offspring inherit half of

each genetic group contribution from each of their parents. The result of including F is that both genetic

groups contribute equally to every observed individual in the Q1988fuzz pedigree.

For example, individual A has phantom dam a and phantom sire b. Row one of the Qf above is a

sum of each phantom parents’ row in F (probability of group membership or fractional contribution of

each genetic group to the phantom parent) divided by two: phantom dam a contributes the following row

in F [1.0 0.0]/2 plus phantom sire b contributes the following row in F [0.0 1.0]/2. In other words,

individual A gets half of phantom dam a’s “g1” group contribution (1.0/2) and its phantom sire b does not

contribute to the proportion of A’s genome derived from “g1”. Similarly, phantom dam a does not contribute

to the proportion of A’s genome derived from “g2” and A gets half of phantom sire b’s contribution from “g2”

(1.0/2).

In a second example, individual B has observed dam A and phantom sire c. Therefore, row two of Qf

above is the sum of dam A’s row in Qf (genetic group contributions) divided by two and phantom sire c’s

row in F (fuzzy classification) divided by two: dam A’s row in Qf (just calculated above) [0.50 0.50]/2

plus phantom sire c’s row in F [0.50 0.50]/2.

To implement an animal model with genetic group effects estimated explicitly as separate fixed regressions,

where the phantom parents have fuzzy classification of genetic group membership, requires the Qf matrix as

just calculated. The implementation in the animal model is no different with fuzzy classification of genetic

groups than without fuzzy classification, just the details of constructing Qf differ slightly. Similarly, there is

no difference when using Qf with fuzzy classification of genetic groups to calculate breeding values (a) from

88

an animal model that has genetic group effects implicitly within the random effects (see above and equation

6 in the main text).

7.3 Constructing A∗
f

Methods to directly construct A−1 and A∗ rely on the basic premise that the flow of alleles through a

pedigree can be traced because each individual inherits, on average, half of its alleles from each parent with

some sampling variation that can be modeled based on the Mendelian sampling variance in the population.

The same principles apply when phantom parents have fuzzy classification of genetic group membership.

Therefore, the same methods to directly construct A∗ without fuzzy classification can now be used to directly

construct an augmented inverse relatedness matrix from a pedigree when fuzzy classification of genetic groups

has been implemented (we will call this matrix A∗
f , where the subscript “f” is used to distinguish this matrix

from A∗ constructed without fuzzy classification of genetic groups) (Fikse 2009).

A∗
f is also a compilation of four sub-matrices that are each a mathematical function of Qf (as calculated

directly above incorporating fuzzy classification), A−1, or both (see Fig. 3e in main text, replacing Q with

the Qf constructed with fuzzy classification).

The A∗
f for any pedigree with phantom parents assigned can be obtained using the makeAinv() function

in the nadiv package and supplying the fuzzy classification defined by F to the fuzz argument. For example,

A∗
f for the Q1988fuzz pedigree is:

Astar_fOut <- makeAinv(Q1988fuzz, fuzz = F)

(Astar_f <- Astar_fOut$Ainv)

6 x 6 sparse Matrix of class "dgCMatrix"

g1 g2

A 1.3333333 -0.6666667 . . -0.3333333 -0.3333333

B -0.6666667 1.8333333 0.5 -1 -0.3333333 -0.3333333

C . 0.5000000 1.5 -1 -0.5000000 -0.5000000

D . -1.0000000 -1.0 2 . .

g1 -0.3333333 -0.3333333 -0.5 . 0.5833333 0.5833333

g2 -0.3333333 -0.3333333 -0.5 . 0.5833333 0.5833333

89

To model genetic group effects, where the phantom parents have fuzzy classification of genetic group

membership, implicitly within the random effects of an animal model, A∗
f is supplied to the model the same

way as the typical A−1 or A∗ (see tutorials above). It remains to be seen if the same alterations to A∗
f are

also necessary as when fitting A∗ in an animal model (see Appendices 6.3.1 and 6.3.2).

References: Appendix S7

Fikse, F. (2009) Fuzzy classification of phantom parent groups in an animal model. Genetics, Selection,

Evolution, 41, 42–49.

Software version information

The following software versions were used to run all of the code above:

R.version.string

[1] "R version 3.3.1 (2016-06-21)"

packageVersion("nadiv")

[1] '2.14.3.1'

packageVersion("MCMCglmm")

[1] '2.22.1'

packageVersion("asreml")

[1] '3.0'

WOMBAT: Linux 64-bit version 12 June 2015, compiled using the ifort compiler with MKL library

(threaded)

ASReml: ASReml 4.10 [28 Dec 2014] lr [18 Mar 2015], from asreml-4.1.0.1051-lr.64.tgz

90

	Appendix S1: Glossary
	References: Appendix S1

	Appendix S2: Collection of pedigrees from wild populations
	Table S2.1 References
	References: Appendix S2

	Appendix S3: Breeding value prediction
	References: Appendix S3

	Appendix S4: Simulating data with genetic group effects
	4.1 Simulating a fixed difference between groups
	4.2 Simulating a temporal trend in breeding values

	Appendix S5: Development of genetic groups in agricultural science
	References: Appendix S5

	Appendix S6: Construction and implementation of Q and A*
	6.1 A small example pedigree
	6.2 Constructing Q
	6.3 Constructing A*
	6.3.1 Genetic groups on top or bottom of A*?
	6.3.2 Removing singularities and other problems within A*

	6.4 How to fit genetic groups in MCMCglmm, ASReml-R, ASReml-standalone, & WOMBAT
	6.4.1 Tutorial dataset ggTutorial
	6.4.2 MCMCglmm
	6.4.2.1 Preparing a pedigree with genetic groups
	6.4.2.2 Fixed explicit genetic group effects with Q (from nadiv)
	6.4.2.3 Random implicit genetic group effects with A* (from nadiv)

	6.4.3 ASReml in R
	6.4.3.1 Preparing a pedigree with genetic groups
	6.4.3.2 Fixed explicit genetic group effects with Q (from nadiv)
	6.4.3.3 Fixed implicit genetic group effects with A* (from nadiv or asreml)
	6.4.3.4 Random implicit genetic group effects with A* (from nadiv)

	6.4.4 ASReml Standalone
	6.4.4.1 Preparing a pedigree with genetic groups
	6.4.4.2 Fixed explicit genetic group effects with Q (from nadiv)
	6.4.4.3 Fixed implicit genetic group effects with A* (from nadiv)
	6.4.4.4 Fixed implicit genetic group effects with A* (from ASReml)
	6.4.4.5 Random implicit genetic group effects with A* (from ASReml)

	6.4.5 WOMBAT
	6.4.5.1 Preparing a pedigree with genetic groups
	6.4.5.2 Fixed explicit genetic group effects with Q (from nadiv)
	6.4.5.3 Random implicit genetic group effects with A* (from nadiv)
	6.4.5.4 WOMBAT's genetic groups (Random group effects with Q from nadiv)

	References: Appendix S6

	Appendix S7: Fuzzy classification of genetic groups
	7.1 Constructing the fuzzy classification matrix F
	7.2 Constructing Qf
	7.3 Constructing Af*
	References: Appendix S7

	Software version information

